
Efficient Fail-Fast Dynamic Subtype Checking
Rohan Padhye

rohanpadhye@cs.berkeley.edu
University of California, Berkeley

USA

Koushik Sen
ksen@cs.berkeley.edu

University of California, Berkeley
USA

Abstract
We address the problem of dynamically checking if an in-
stance of class S is also an instance of class T . Researchers
have designed various strategies to perform constant-time
subtype tests. Yet, well-known production implementations
degrade to linear search in the worst case, in order to achieve
other goals such as constant space and/or efficient dynamic
class loading. The fast path is usually optimized for subtype
tests that succeed. However, in workloads where dynamic
type tests are common, such as Scala’s pattern matching and
LLVM compiler passes, we observe that 74%–93% of dynamic
subtype tests return a negative result. We thus propose a
scheme for fail-fast dynamic subtype checking. In the com-
piled version of each class, we store a fixed-width bloomfilter,
which combines randomly generated type identifiers for all
its transitive supertypes. At run-time, the bloomfilters enable
fast refutation of dynamic subtype tests with high probability.
If such a refutation cannot be made, the scheme falls back to
conventional techniques. This scheme works with multiple
inheritance, separate compilation, and dynamic class loading.
A prototype implementation of fail-fasts in the JVM provides
1.44×–2.74× speedup over HotSpot’s native instanceof, on
micro-benchmarks where worst-case behavior is likely.

CCS Concepts • Software and its engineering→ Poly-
morphism; Inheritance; Compilers.

Keywords object-oriented programming, dynamic casts,
multiple inheritance, bloom filters

ACM Reference Format:
Rohan Padhye and Koushik Sen. 2019. Efficient Fail-Fast Dynamic
Subtype Checking. In Proceedings of the 11th ACM SIGPLAN Inter-
national Workshop on Virtual Machines and Intermediate Languages
(VMIL ’19), October 22, 2019, Athens, Greece. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3358504.3361229

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VMIL ’19, October 22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6987-9/19/10. . . $15.00
https://doi.org/10.1145/3358504.3361229

1 Introduction
In object-oriented programming languages, a common run-
time operation is to check whether an object o, statically
known to be an instance of class S , is also an instance of
class T . Such a test enables guarded type-safe conversion of
a value of static type S to a value of static type T ; that is,
dynamic type casting. This test is performed by instanceof
in Java and dynamic_cast in C++.
Dynamic subtype checking is a well-studied problem; re-

searchers have designed a number of efficient implementa-
tion strategies over the last four decades. Although several
strategies proposed in the literature guarantee worst-case
constant-time subtype tests, such strategies either: (1) im-
pose restrictions, such as supporting only single inheritance
or assuming a closed class hierarchy, or (2) require per-class
storage that may be linear in the size of the class hierarchy.
In practice, several production implementations optimize for
other objectives such as constant space, fast dynamic class
loading, and/or minimizing the number of instructions for
subtype tests. In these implementations, a linear-time scan
may be necessary in the worst case. These implementations
assume that most dynamic subtype tests succeed—usually
because the object o is exactly of the queried type T .
In this paper, we first show that in some domains where

dynamic subtype tests are heavily used, most of the dynamic
subtype tests fail; that is, o is not an instance ofT . In particu-
lar, we consider Scala’s implementation of pattern matching
as well as the LLVM compiler infrastructure; preliminary
experiments show that 74%–93% of dynamic subtype tests
fail. In both these implementations, failed tests require linear
search when multiple inheritance is involved.
In response to these observations, we propose a novel

scheme for fail-fast dynamic subtype checking. Our scheme
stores only one extra machine word per class and requires
only a single load + bit-mask test to refute dynamic subtype
checks with high probability. If such a refutation cannot be
made, the scheme falls back to conventional techniques. Our
scheme is simply an add-on for existing implementations.
It attempts to prevent worst-case linear search when it is
likely to occur. For example, a prototype implementation
of fail-fasts for the JVM provides up to 2.74× speedup over
HotSpot’s native instanceof, on micro-benchmarks that
exercise Scala’s pattern matching on traits. There is no run-
time overhead when the fail-fast test is not performed. Our
scheme works with multiple inheritance, separate compila-
tion, and dynamic class loading.

32

https://doi.org/10.1145/3358504.3361229
https://doi.org/10.1145/3358504.3361229

VMIL ’19, October 22, 2019, Athens, Greece Rohan Padhye and Koushik Sen

Table 1. Summary of dynamic subtype checking strategies.

Scheme Constant Space Constant Time Multiple Inheritance Open Hierarchy

Schubert et al. [14] ✓ ✓ ✗ ✗
Cohen’s display [5] ✗ ✓ ✗ ✓

NHE [10] ✗† ✓ ✓ ✗

Packed encoding [15] ✗† ✓ ✓ ✓‡

PQ-Encoding [17] ✗† ✓ ✓ ✗

R&B [13] ✗† ✓ ✓ ✓‡

Gibbs and Stroustrup [8] ✓ ✓ ✓ ✗
Perfect Hashing [6] ✗ ✓ ✓ ✓
HotSpot JVM [4] ✓/✗ ✗ ✓ ✓
LLVM [1] ✓ ✗ ✓ ✗

† The per-class space requirement is very small in practice.
‡ Requires non-trivial recomputation when dynamically loaded classes change the hierarchy.

2 Related Work
Themost general approach for dynamically checkingwhether
an object o is a an instance of T involves walking the inheri-
tance tree of o’s class to check if it extends T [16].

Of course, researchers have developedmore efficient strate-
gies. These schemes differ in their storage requirement, their
run-time complexity, whether they make a closed-world as-
sumption (i.e., the type hierarchy is known at compile-time),
and whether they support multiple inheritance.
Schubert et al.’s [14] scheme, originally developed for

natural-language taxonomies, assigns each class in a single-
inheritance hierarchy an integer range: ⟨min,max⟩. This
range has the property that the range of each node in the
tree is a sub-range of all its ancestors’ ranges. Thus, dy-
namic subtype checks are a simple range-inclusion test. This
scheme makes a closed-world assumption.

Cohen’s display [5] associates a table of size D with each
class that is at depth D from the root of the class hierarchy.
The table is populated with unique type identifiers for each
transitive superclass in order. The test for whether an object
o is an instance of class T is performed by querying the
table of o’s class at index depth(T) to test if it matches the
unique identifier of T . This scheme works with open class
hierarchies, but does not support multiple inheritance.
Vitek et al. [15] propose several encodings of the class

hierarchy to support space- and time-efficient subtype tests
that support multiple inheritance. Palacz and Vitek [13] pro-
pose a range-and-bucket scheme for Java: single-inheritance
classes are handled by Schubert-style range queries, while
multiply-inheritable interfaces are mapped to buckets. An
invariant is that no two interfaces that are reachable from
each other in the hierarchy may map to the same bucket.
Although these schemes support open hierarchies, dynamic
class loading requires non-trivial recomputation at run time.
Gibbs and Stroustrup [8] propose mapping every class

to a prime number. Each compiled class stores the product

of the primes associated with all its transitive superclasses.
Dynamic subtype tests then reduce to simple integer divis-
ibility. This scheme requires constant space per class and
supports multiple inheritance. However, in order to ensure
uniqueness of primes within a class hierarchy, a closed world
assumption must be made.

Ducournau [6] proposes perfect hashing to perform guar-
anteed constant-time dynamic subtype checks for open hier-
archies with multiple inheritance.
Table 1 summarizes the trade-offs for these schemes as

well as some others.

3 Real-World Case Studies
Althoughmuch research has focused on guaranteeing constant-
time dynamic subtype tests, production implementations
have chosen to make other trade-offs.

We look at case studies from two domains where dynamic
subtype tests are commonly used:

1. Scala supports pattern-matching of objects, using the
match keyword [7]. When the Scala compiler trans-
lates the case clauses in a match to JVM bytecode, a
series of instanceof and checkcast instructions are
emitted. It is thus likely that when running any Scala
program that makes use of pattern matching, a large
number of dynamic subtype tests will be performed.

2. A core API of the LLVM compiler infrastructure [11]
is the dyn_cast<T> function [2]. This function per-
forms a safe dynamic type cast of LLVM IR nodes
(e.g. casting from Instruction to CallInst). Unlike
C++’s standard dynamic_cast operator, which relies
on v-tables, LLVM uses it’s own Run-Time Type Infor-
mation (RTTI) that supports dynamic casts between
instances of non-virtual classes. Internally the cast
uses a function called isa<T>, which is similar to Java’s
instanceof. Dynamic casts are heavily used by LLVM
analysis and optimization passes.

33

Efficient Fail-Fast Dynamic Subtype Checking VMIL ’19, October 22, 2019, Athens, Greece

3.1 Production Implementations
3.1.1 HotSpot JVM
The dynamic subtype checking implementation of theHotSpot
JVM [4] uses a variant of Cohen’s display that requires
constant space. This works because all Java classes (except
Object) have exactly one superclass; multiply inheritable in-
terfaces are handled out-of-band. Constant space is achieved
by simply bounding the depth of the class hierarchy that the
display supports. This implementation is used both by the
instanceof instruction as well as implicit checks required
by aastore.

At run-time, each class C stores a display table of up to 8
transitive superclasses, in order, starting from Object. These
classes form C’s primary supertypes. If C is very deep in the
hierarchy; that is, its distance from Object is greater than
8, then all of C’s supertypes that have depth larger than 8
are considered secondary supertypes. Similarly, all the inter-
faces implemented by C , taken transitively, also belong to
its secondary supertypes. Dynamic subtype checks against
primary supertypes are very fast: they require a constant-
time access into the Cohen-style display table, which can
require as few as 3 instructions on some architectures. Sub-
type checks against secondary supertypes require a linear
scan over an array of secondary supertypes. Each class also
has a single-element cache for the last secondary supertype
against which a dynamic subtype check succeeded.
It is clear that this implementation is optimized for both

dynamic subtype tests against primary supertypes and suc-
cessful dynamic subtype tests against secondary supertypes.
A dynamic subtype test against secondary supertypes that
fails necessarily requires a linear scan. The original paper [4]
reports experiments with one- and two-element negative
caches; these caches were eventually dropped since failing
tests against secondary supertypes were not found to be
common on SpecJVM98.
Although this scheme requires only constant space in

theory—the worst-case linear scan can simply traverse the
inheritance graph—the HotSpot JVM currently pre-computes
all secondary supertypes of a class and stores them in a
variable-sized array associated with the class.

3.1.2 LLVM
In LLVM, the expression isa<T>(o) evaluates to true if ob-
ject o is an instance of class T . This C++ template function
simply expands to a staticmethod invocation: T::classof(o).
Such a static method is defined by every class in LLVM’s hi-
erarchy. To implement the classof method, LLVM uses the
following convention for propagating RTTI [1] with constant
space per-class.
Every class S that forms the root of a class hierarchy de-

fines: (1) an enum, say SKind, containing unique integer iden-
tifiers for all concrete classes that derive from S , and (2) a
method, say getSKind(), that returns the SKind belonging

to an instance of S . Further, every instance of a concrete class
T that derives from S stores in its object layout an identi-
fier of type SKind that identifies class T . The static method
T::classof(S* o) returns true if o->getSKind() identi-
fiesT or any subclass ofT . For single-inheritance hierarchies,
the numeric kinds can be assigned using a preorder traver-
sal of the class hierarchy so that classof requires only an
integer range-inclusion test.

The scheme gets complicated in the presence of multiple
inheritance. Consider T::classof(M* o), where neitherM
norT are subclasses of each other. This querywill only return
true for objects belonging to classes that inherit from bothT
andM . LLVM’s implementation compares o->getMKind()
with every MKind (i.e, identifier for subclasses of M) that
belongs to a class that is also a subclass of T . When o is not
an instance ofT , this amounts to a full linear search over the
common descendants of T andM .

3.2 Most Dynamic Subtype Tests Fail
It is clear that instanceof and isa<T> have fast paths for
the case where dynamic subtype tests succeed.We performed
some small experiments to measure howmany dynamic type
tests actually succeed in practice.
First, we used ASM [12] to instrument instanceof byte-

codes in JVM .class files. Our instrumentation allowed us to
profile the results of instanceof instructions. We started by
profiling the Scala compiler (version 2.12), which itself is writ-
ten in Scala. When compiling a trivial HelloWorld.scala
input, the instanceof instructionwas executed 47,597 times,
and it returned false in 93% of the cases! We then considered
a larger workload: building the Scala compiler itself using
sbt. In this workload, 3.1 billion instanceof instructions
were executed, of which 2.35 billion (76%) returned false.
More than 45 million such tests were against interfaces.

Next, we performed a similar experiment with LLVM (ver-
sion 8.0). We modified the implementation of the isa<T>
function in llvm/Support/Casting.h to profile its return
value. We then built the Clang compiler, which is based on
LLVM, with this modification. When using Clang to com-
pile a simple HelloWorld.cpp program, LLVM performed
5,537,150 dynamic subtype tests. Of these, 74% failed. We
then considered a larger workload: a 10KLOC single-file
program written in C. When using Clang to compile this
file, 93.7 million isa<T> tests were performed, of which 73
million (78%) failed.
Further, we observe that LLVM’s class hierarchy is quite

large and involves complex multiple inheritance. For exam-
ple, the class CallInst, which represents call instructions
in the LLVM IR, is 10 levels deep from the furthest root in
its hierarchy, and has 18 transitive superclasses [9].
In summary, we observed scenarios where: (1) dynamic

subtype tests are commonly used, (2) multiple inheritance is
supported, and (3) most dynamic subtype tests fail.

34

VMIL ’19, October 22, 2019, Athens, Greece Rohan Padhye and Koushik Sen

4 Fail-Fast using Bloom Filters
We propose a scheme that augments existing implementa-
tions of dynamic subtype testing, such as those used by the
HotSpot JVM and LLVM, in order to avoid worst-case linear
search when it is likely to occur.
At compile-time, we assign each type T a randomly gen-

erated fixed-size bit vector α(T). Typically, we want this bit
vector to be the size of a single machine word, saym bits.
For example, if our target architecture uses 64-bit words,
thenm=64. An important constraint is that α(T) must have
a fixed parity k ; that is, exactly k bits of α(T) are set to one.
α(T) is thus randomly chosen from one of mCk choices, with
replacement. We require that k be much smaller thanm. Sec-
tion 4.1 explores how to choose k optimally. For m=64, a
good candidate is k=3.

For each type T , we compute anotherm-bit vector called
β(T) at compile-time. β(T) combines the values of α(S) for
every type S which is a supertype of T using a bitwise OR
operation (denoted by the symbol ∨). Formally, if we use the
notation T <: S to denote that T is a subtype of S , then:

β(T) =
∨
T <:S

α(S)

The following property always holds: if S is a supertype
ofT , then the k set bits of α(S)must also be set in β(T). If we
use ∧ to denote the bitwise AND operation, then we have
the invariant:

T <: S ⇒ β(T) ∧ α(S) = α(S)

This implication is unidirectional. It is possible for α(S) to
be a subset of β(T) even if S is not a supertype of T . This
can happen if the k set bits of α(S) are coincidentally set
across the α values for T and its supertypes. However, we
can reduce the probability of such collisions by picking an
appropriate value of k (§4.1).
At run-time, β(T) is stored along with the metadata of T .

When performing dynamic subtype tests that are likely to
fail and require linear scans, we can prefix the dynamic type
test with a fail-fast in the following way:
// is object `o` an instance of type `T`?

boolean fail_fast_instanceof(S o, type T) {

if (type(o).beta & T.alpha != T.alpha) {

return false;

} else {

return slow_instanceof(o, T); // linear scan

}

}

If α(T) is not a subset of β(T), then o is surely not an instance
of T. β(T) is thus a bloom filter [3]: it enables fast refutations
with high probability. When such a refutation cannot be
made, we fall back to the slow linear search.
Note that the fail-fast test only needs to be performed

for cases where linear search is otherwise necessary; for

example, when performing instanceof with secondary su-
pertypes in the JVM, or isa tests with multiple inheritance
in LLVM. For cases where existing schemes return results
quickly, such as instanceof on primary supertypes in the
JVM, there is no extra cost. Also note that it is not necessary
to store α(T) in the run-time metadata ofT if the target type
will always be known at compile time. In the above pseudo-
code, T.alpha is a compile-time constant. In such cases, our
proposed scheme requires storing only one extra machine
word per type T . However, α(T) would need to be stored at
run-time if we would like to support dynamic target types
in subtype tests.
Fail-fasts have the same space and time overhead as a

negative cache [4], but are not limited to a single target type.
Our scheme appears to have some similarities to Krall et

al.’s near-optimal hierarchical encoding (NHE) [10]. NHE
associates each typeT with an encoding γ (T). This encoding
provides a much stronger invariant than ours:

T <: S ⇔ γ (T) ∧ γ (S) = γ (S)

Dynamic subtype tests can therefore be performed in guar-
anteed constant time. However, computing the NHE is an
NP-hard problem. Further, NHE requires knowing the entire
type hierarchy ahead-of-time and does not support incre-
mental recomputation if the hierarchy changes. Although
our scheme is much weaker than NHE, the encodings α(T)
and β(T) are extremely fast to compute, support separate
and parallel compilation, and do not require recomputation
in the presence of dynamic class loading.

4.1 Choosing the Right Parity
An important design decision for implementing fail-fasts
is picking a value for k , given a fixed value form. For the
purpose of discussion, let’s assume thatm=64, since 64-bit
systems are widely used at the time of writing. Our goal
is to pick a value for k that reduces the probability of false
positives; that is, cases where the fail-fast refutation cannot be
made even though the dynamic subtype test should return a
negative result. A false positive results in a full linear search.

At a first glance, it is clear that very small and very large
values of k are undesirable simply because they reduce the
space of mCk choices from which to generate α(T). For ex-
ample, both k=1 and k=63 are bad candidates whenm=64,
because they permit only 64 unique values of α(T). This
might suggest considering k=32, which maximizes 64Ck with
over 1.8×1018 unique values. However, this turns out to be a
terrible choice: if a type T has 10 transitive supertypes, then
the probability of a false positives when k=32 is over 80%!
The general formula for the false positive rate p with a

bloom filter ofm bits that contains n elements of k bits each
is approximately [3]:

p = (1 − e−
k×n
m)k

35

Efficient Fail-Fast Dynamic Subtype Checking VMIL ’19, October 22, 2019, Athens, Greece

0 5 10 15 20 25 30
Number of transitive supertypes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y
of

 fa
lse

 p
os

iti
ve

s

False Positive Rate for 64-bit bloom filter
k=1
k=2
k=3
k=4
k=5

Figure 1. False positive rate whenm = 64.

In our use of bloom filters for dynamic subtype checking,
n is the number of transitive supertypes of T that together
combine to form β(T).
Figure 1 plots the false positive rate for some candidate

values of k whenm = 64, as a function of n. As the value of
k becomes larger, the false positive rate quickly increases for
large values of n. For example, when k=5, the false positive
rate at n=30 is about 60%. On the other hand, k=1 performs
poorly for small values of n; the false positive rate is 14% at
n=10. Both k=2 and k=3 are good candidates: k=2 has lower
false positive rate when n > 18, while k=3 has lower false
positive rate when n < 18.

The choice of k would need to be made by an implementor
based on the size of the machine wordm and the typical size
of type hierarchies encountered in real-world programs.

5 Preliminary Evaluation
We have implemented a prototype of our proposed scheme
for the JVM. In this paper, our goal is to quickly evaluate if
the proposed scheme speeds up instanceof checks with a
secondary type as target, on micro-benchmarks.
Instead of modifying a full-blown VM like HotSpot, we

instead modify classes—either manually or via bytecode
instrumentation—to support fail-fasts at the application level.
This is done only for the purpose of preliminary evaluation;
a production implementation of fail-fasts will require VM
integration. We then replace uses of instanceof in the ap-
plication with a fail-fast followed by a fallback to the native
instanceof.
Classes are modified as follows. Assume that we have a

class Foo that extends class Bar and implements interfaces
Baz and Qux. In this case, Foo’s supertypes include Foo, Bar,
Baz, Qux, as well as transitive supertypes of Bar, Baz, and
Qux. The class Foo is modified by adding the following high-
lighted lines in its definition:

class Foo extends Bar implements Baz , Qux {

public static final long __alpha__

= FailFast.genAlpha ();

public static final long __beta__

= Foo.__alpha__ | Bar.__beta__ |

Baz.__beta__ | Qux.__beta__;

@Override public long __getBeta__ () {

return Foo.__beta__;

}

/* members of Foo */

}

A static field __alpha__ stores the randomly generated value
of α(Foo) with k=3. Another static field __beta__ stores the
statically computed value of β(Foo). This value is computed
by performing a bitwise OR with Foo’s own __alpha__ as
well as the __beta__ of its immediate supertypes—the latter
together contain the set bits from the __alpha__ fields of
all transitive supertypes (e.g. supertypes of Bar). The fields
__alpha__ and __beta__ are similarly defined for interfaces.

For the purposes of our preliminary evaluation, we also
inject a new virtual method __getBeta__() into every class:
this method returns the __beta__ value of the corresponding
class. Thismethod is declared at the root of a sub-hierarchy of
classes or interfaces defined in an application. We can only
add fail-fasts for instanceof operations where the static
type of the left-hand side operand is a class or interface that
declares the __getBeta__() method. This virtual method
is a proxy that simulates a real-world implementation of
our scheme in a VM, where the __beta__ value would be
retrieved from a class’s metadata or descriptor.
Program fragments such as if(o instanceof T){...}

can now be replaced with the following fail-fast:
if (o.__getBeta__ () & T.__alpha__ == T.__alpha__

&& o instanceof T) { ... }

If the fail-fast succeeds, then the left-hand-side of the short-
circuiting ‘&&’ will be false, thereby preventing linear search.
Otherwise, we fall back to the original implementation of
instanceof. Note again that this replacement is only done
when T is a secondary type (ref. §3.1.1).

We evaluate our proposed scheme on the following micro-
benchmarks, each of which perform dynamic subtype tests
on a single object: (1) a single instanceof operation against
an interface, which always returns false. (2)k-random cases:
a series of k if-instanceof-then-checkcast branches, emit-
ted by the Scala compiler when performing pattern matching
on k distinct traits (which in turn are compiled into inter-
faces). Exactly one of the cases match, and this case is chosen
uniformly at random in each trial of benchmarking. We con-
sider k=2,5,10. (3) k-random cases with n-noise: we make all
classes implement n dummy interfaces that are not used in
pattern matching. The idea here is that such noise increases

36

VMIL ’19, October 22, 2019, Athens, Greece Rohan Padhye and Koushik Sen

Table 2. Preliminary Experimental Evaluation

Baseline [4] With Fail-Fast

Benchmark Time Worst Case Time Speedup Worst Case

Single Negative 51.458 ± 0.126 ns 100% 35.663 ± 0.092 ns 1.44× 0%
2-Random Case Match 46.248 ± 0.127 ns 33% 39.314 ± 0.082 ns 1.18× 0%
5-Random Case Match 75.090 ± 0.226 ns 67% 47.550 ± 0.130 ns 1.58× 0%
10-Random Case Match 116.031 ± 0.582 ns 82% 50.722 ± 0.228 ns 2.29× 0%
10-Random Cases + 10-Type Noise 143.057 ± 0.424 ns 82% 52.286 ± 0.205 ns 2.74× 9%

both the cost of linear search for the baseline as well as the
false positive rate for the bloom filters used for fail-fasts. We
consider only k = 10 and n = 10.
Table 2 lists the results of these experiments. For both

the baseline as well as with our fail-fast instrumentation,
we report (1) the time, as measured by OpenJDK’s Java Mi-
crobenchmarking Harness (JMH), across 100 iterations of
500ms each (after 10 warmup iterations), and (2) the frac-
tion of native instanceof operations that returned false—
which in our case implies linear scan—measured using the
samemethodology as in §3.2. Note that any worst-case linear
scans encountered by our fail-fast scheme are purely due
to false positives (ref. §4.1). All experiments were run on
a mid-2015 Macbook Pro running MacOS 10.13.6 and Java
HotSpot Server VM version 12.0.2+10.
From Table 2, it can be seen that the fail-fast approach

achieves significant speedup across all micro-benchmarks.
Without noise, there are no false positives and all negative
subtype tests can be returned in constant time. On the final
benchmark which performs pattern matching on 10 cases,
where the matched object also implements 10 dummy inter-
faces, the baseline requires performing linear scans about
82% of the time; even with false positives, our scheme per-
forms linear scans only 9% of the time. The noise overhead
due to false positives (1.56ns) is less than the noise overhead
of the baseline (27.02ns), which is due to consistently longer
linear scans. The overall speedup in this benchmark is 2.74×.

6 Conclusion
We presented a scheme for performing fail-fast dynamic
subtype tests, which can be selectively applied when worst-
case linear scan is likely. The proposed fail-fast can be im-
plemented as an add-on to any existing subtype checking
scheme, such as the HotSpot VM or the LLVM RTTI. On
micro-benchmarks, the fail-fast helps provide more than 2×
speedup over the HotSpot VM’s native instanceof.

Acknowledgments
This work is supported in part by NSF grants CCF-1409872,
CCF-1908870, CCF-1900968, and CNS-1817122.

References
[1] 2019. How to set up LLVM-style RTTI. https://llvm.org/docs/

HowToSetUpLLVMStyleRTTI.html Accessed June 21, 2019.
[2] 2019. LLVM Programmer’s Manual. https://llvm.org/docs/

ProgrammersManual.html Accessed June 14, 2019.
[3] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with

Allowable Errors. Commun. ACM 13, 7 (July 1970), 422–426. https:
//doi.org/10.1145/362686.362692

[4] Cliff Click and John Rose. 2002. Fast Subtype Checking in the HotSpot
JVM. In Proceedings of the 2002 Joint ACM-ISCOPE Conference on Java
Grande (JGI ’02). ACM, New York, NY, USA, 96–107. https://doi.org/
10.1145/583810.583821

[5] Norman H Cohen. 1991. Type-extension type test can be performed
in constant time. ACM Transactions on Programming Languages and
Systems (TOPLAS) 13, 4 (1991), 626–629.

[6] Roland Ducournau. 2008. Perfect Hashing As an Almost Perfect Sub-
type Test. ACM Trans. Program. Lang. Syst. 30, 6, Article 33 (Oct. 2008),
56 pages. https://doi.org/10.1145/1391956.1391960

[7] Burak Emir, Martin Odersky, and John Williams. 2007. Matching
Objects with Patterns. In ECOOP 2007 – Object-Oriented Programming,
Erik Ernst (Ed.). Springer Berlin Heidelberg, 273–298.

[8] Michael Gibbs and Bjarne Stroustrup. 2006. Fast dynamic casting.
Software: Practice and Experience 36, 2 (2006), 139–156.

[9] LLVMDevelopers Group. 2019. llvm::CallInst Class Reference. https://
llvm.org/doxygen/classllvm_1_1CallInst.html Accessed June 21, 2019.

[10] Andreas Krall, Jan Vitek, and R Nigel Horspool. 1997. Near optimal hi-
erarchical encoding of types. In European Conference on Object-Oriented
Programming. Springer, 128–145.

[11] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis and Transformation. San Jose,
CA, USA, 75–88.

[12] OW2 Consortium. 2018. ObjectWeb ASM. https://asm.ow2.io.
[13] Krzysztof Palacz and Jan Vitek. 2003. Java Subtype Tests in Real-Time.

In ECOOP 2003 – Object-Oriented Programming, Luca Cardelli (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 378–404.

[14] Lenhart K. Schubert, Mary Angela Papalaskaris, and Jay Taugher. 1983.
Determining type, part, color and time relationships. IEEE Computer
16, 10 (1983), 53–60.

[15] Jan Vitek, R. Nigel Horspool, and Andreas Krall. 1997. Efficient Type
Inclusion Tests. In Proceedings of the 12th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA ’97). ACM, New York, NY, USA, 142–157. https://doi.org/10.
1145/263698.263730

[16] Niklaus Wirth. 1988. Type extensions. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 10, 2 (1988), 204–214.

[17] Yoav Zibin and Joseph Yossi Gil. 2001. Efficient Subtyping Tests with
PQ-encoding. In Proceedings of the 16th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA ’01). ACM, New York, NY, USA, 96–107. https://doi.org/10.
1145/504282.504290

37

https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
https://llvm.org/docs/ProgrammersManual.html
https://llvm.org/docs/ProgrammersManual.html
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/583810.583821
https://doi.org/10.1145/583810.583821
https://doi.org/10.1145/1391956.1391960
https://llvm.org/doxygen/classllvm_1_1CallInst.html
https://llvm.org/doxygen/classllvm_1_1CallInst.html
https://asm.ow2.io
https://doi.org/10.1145/263698.263730
https://doi.org/10.1145/263698.263730
https://doi.org/10.1145/504282.504290
https://doi.org/10.1145/504282.504290

	Abstract
	1 Introduction
	2 Related Work
	3 Real-World Case Studies
	3.1 Production Implementations
	3.2 Most Dynamic Subtype Tests Fail

	4 Fail-Fast using Bloom Filters
	4.1 Choosing the Right Parity

	5 Preliminary Evaluation
	6 Conclusion
	Acknowledgments
	References

