
API as a Social Glue

Rohan Padhye
IBM Research India

ropadhye@in.ibm.com

Debdoot Mukherjee
IBM Research India

debdomuk@in.ibm.com

Vibha Singhal Sinha
IBM Research India

vibha.sinha@in.ibm.com

ABSTRACT
The rapid growth of social platforms such as Facebook, Twit-
ter and LinkedIn underscores the need for people to connect
to existing and new contacts for recreational and profes-
sional purposes. A parallel of this phenomenon exists in the
software development arena as well. Open-source code shar-
ing platforms such as GitHub provide the ability to follow
people and projects of interest. However, users are manu-
ally required to identify projects or other users whom they
might be interested in following. We observe that most soft-
ware projects use third-party libraries and that developers
who contribute to multiple projects often use the same li-
brary APIs across projects. Thus, the library APIs seem
to be a good fingerprint of their skill set. Hence, we argue
that library APIs can form the social glue to connect people
and projects having similar interests. We propose APINet,
a system that mines API usage profiles from source code
version management systems and create a social network of
people, projects and libraries. We describe our initial im-
plementation that uses data from 568 open-source projects
hosted on GitHub. Our system recommends to a user new
projects and people that they may be interested in, suggests
communities of people who use related libraries and finds
experts for a given topic who are closest in a user’s social
graph.

Categories and Subject Descriptors
K.6 [Management of Computing and Information Sys-
tems]: Project and People Management; D.2.8 [Software
Engineering]: Reusable Software—Reusable libraries

General Terms
Human Factors

Keywords
Mining software repositories, usage expertise, social net-
works, recommender systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/06 ...$15.00.

1. INTRODUCTION
In recent years, there has been a rapid growth in the use

of social platforms such as Facebook, Twitter and LinkedIn
that enable people to discover and maintain relations for
recreational or professional purposes. For example, Twitter
suggests to users other people having similar interests whose
tweets they may like to follow, while LinkedIn helps profes-
sionals find people with similar skill sets for recruiting or
consulting. A similar parallel exists in the software develop-
ment world as well. Developers collaborate with each other
on projects using source control management systems. Plat-
forms such as GitHub.com allow users to follow developers
and projects of interest to keep themselves updated of new
activity. However, subscribing to a person or project is still
a predominantly manual activity in all such platforms.

We propose APINet, a system to automatically discover
a developer’s interest and/or expertise by mining software
repositories and using this information to recommend new
connections and communities. We first observe that most
software projects use third-party libraries. We also observe
that developers who contribute to multiple projects often
use the same API in more than one project, indicating that
the API forms a skill set for such developers. An analysis
of 568 GitHub projects reveals that of the 1,355 developers
who contributed to at least 2 projects, 395 of them used the
same package in at least 2 projects. Of the 4,030 packages
that were used across multiple projects, 2,996 were used by
at least two developers. The APIs used in a project help
estimate to some level what functionality a project is us-
ing or building upon. For example, a developer who has
used the org.apache.lucene package in one project may be
interested in connecting to other developers using Apache
Lucene, or projects that require a search engine component,
or even people who use Apache Solr, a library that is com-
monly found along with Lucene. APINet extracts develop-
ers’ API usage profiles from code version archives, builds
a social network of people, projects and libraries and uses
statistical techniques to generate recommendations of other
people, projects and library communities.

The main contributions of this paper include:

• A method to create a cross-project social network for
developers by mining API usage from version manage-
ment systems.

• A description of our implementation of this system for
568 Java projects hosted on GitHub.

• A discussion on potential applications of this system
for finding experts, recommending people and projects
to a user and discovering topic-specific communities.

2. SYSTEM OVERVIEW
In this section, we present a brief overview of APINet and

discuss its initial prototype, which is built with data from
GitHub. Figure 1 outlines the different stages in APINet.
First, we mine a network of people, projects and API pack-
ages from data that is crawled from code versioning systems.
We link API packages to the projects that have imported
them and to developers who may be using them. Next,
we resolve pairwise relationships between different entities
which are connected in such a network with a Personalized
PageRank (PPR) algorithm [4]. Such relationships spell out
the association of an entity with respect to another entity,
even if the two entities are not directly linked. PPR relation-
ships become the basis for driving interesting applications
such as recommending social connections, creating commu-
nities and so on. In the following subsections, we describe
each of these stages in more detail and illustrate them with
examples from the APINet prototype with GitHub data.

2.1 Mining API Usage
There are three types of entities in APINet—project, per-

son and package. To bootstrap an APINet, we choose a set
of projects and pull their source files from their respective
code versioning systems. We extract the list of contributors
from the change logs of the source files to set up the per-
son nodes in the network. Also, we crawl the profile pages
(if available) for these contributors to associate meta-data
(e.g., email, affiliation) with the person nodes. Packages are
resolved by parsing import statements in the source files.
A key step is to filter the packages to keep only those that
represent APIs. In our current implementation, we assume
that packages that have been imported in at least two dis-
tinct projects belong to re-usable libraries.

We set up the initial APINet prototype with 568 top-
starred Java projects in GitHub. We found 7,384 contrib-
utors for this set of projects, of which 5,015 had GitHub
profiles; we only considered the latter set for recommenda-
tions. We parsed 23,919 unique packages. Out of these,
4,030 packages were imported in 2 or more projects.

In the network graph, there is an edge from a project k
to every package p that is imported by some file in k. Sim-
ilarly, a developer d is linked to a package p if we believe
that d is familiar with the API of p. There are several ways
of extracting this association, such as analyzing individual
method invocations present in code contributed by the de-
veloper [10]. However, such techniques require knowledge
of a project’s dependencies in order to resolve types from
program fragments. Our prototype implementation trades
off this accuracy for the ability to quickly analyze hundreds
or thousands of projects using arbitrary build systems. We
use the following heuristic: let contrib(f, d) be the relative
contribution made by developer d to the file f , computed as
the fraction of total commits involving f that are authored
by d, and let imports(f) be the set of packages imported in
file f , then our confidence that developer d is familiar with
package p is computed as:

confidence(d, p) = max
∀f :p∈imports(f)

[contrib(f, d)]

If a file has only one contributor, we can say with 100%
confidence that this person is familiar with the APIs used
in that file. We prune our graph by removing edges where
the confidence is less than 50%. Now, since we are more
interested in distinctive packages (e.g. soot.jimple) than

common packages (e.g. org.junit), we set the edge weights
as the product of the confidence and the inverse document
frequency (idf) of the package p, calculated as:

idf(p) = log|K|
|K|

|{k ∈ K : p ∈ imports(k)}|
where, K is the set of projects analyzed and imports(k) is
the set of packages imported by project k.

A network created as above can help answer different
kinds of queries on expertise of people and the projects
they participate in. Who is familiar with package A and
has worked on project B? What APIs are common to project
X and project Y? One can import the network to a graph
database (e.g. Neo4j, Titan) and use a graph query lan-
guage (e.g. Cipher, Gremlin) to process such queries. Also,
Codebook [1] provides a framework for running queries on
rich graphs that connect a variety of software engineering
artifacts (e.g. source files, methods, work-items). The fo-
cus of this paper is how to go beyond running exact queries
toward generating ranked recommendations via statistical
inference on such networks. Next, we describe computation
of Personalized PageRank, the basis for recommendations.

2.2 Computing Personalized PageRank
Imagine a random surfer who walks over the APINet

graph. Say, it starts at a person node, s and walks to
any of its neighbor, v, package nodes with a probability,
C(s, v). From the package, v, it may again walk to any of
v’s neighbors—projects, packages or people. At it any point,
it can choose not to walk to the neighbors but jump (called
teleport in PageRank terminology) back to the source node
s. In the steady state for such a random walk, the probabil-
ity of the surfer landing at any node in our network reflects
the strength of its association with the source node, s. Such
a random surfer differs from the one described in PageRank
[9] because here the teleports happen to the root and not to
any random node in the network. This helps to personalize
the ranks with the respect to the chosen root [4]. A similar
method has been described by Chakrabarti et. al. [3] for
searching on Entity-Relationship (E-R) networks. Formally,
the |V | × 1 Personalized PageRank vector for a node u in
the graph G = (V,E) is written as pr, and is a solution to:

pr = αCpr + (1− α)r

where, r is a |V | × 1 teleport vector where r(u) = 1 and
r(v) = 0, v 6= u; C is the |V | × |V | matrix with the proba-
bilities of walking the different edges in E and α gives the
probability of walking as against teleporting.

A Personalized PageRank (PPR) vector for any entity in
our network helps easily determine the set of top-k entities
that have a strong association with it. We calculate this vec-
tor for all entities to arrive at the pairwise PPR values. Per-
sonalized PageRank is an attractive approach for inferencing
on the APINet network because it takes into account for the
transitive relationships that impact association between any
two enities. For instance, two people may be deemed similar
in terms of their expertise if they have worked on similar but
not exactly same APIs. Similarity between two APIs can in
turn depend on the similarity of projects that they share,
similarity of people who use them and so on.

2.3 APINet Applications
Now, we describe a set of applications around APINet,

which are aided by the Personalized PageRank computation.

Figure 1: APINet: System Diagram

2.3.1 Search for API usage
A common query is to search for people who are skilled in

a particular API (e.g. Apache Lucene) and projects which
use it. To address such a query, first we select a set of
packages, where there is a keyword match (e.g. find package
names that contain lucene). Next, we would like to have a
Personalized PageRank vector with respect to the nodes in
our network corresponding to the selected packages. Such
a vector is computed as a linear combination of the pre-
computed PPR vectors for the individual matched packages
[6] and presented as a ranked list of results.

2.3.2 Recommend what to Follow in Social Media
The Personalized PageRank vector for any person X leads

us to ranked recommendations for what X can potentially
follow in social fora:

1. People to Follow: People with top PPR scores are ex-
pected to be holistically similar to X; in terms of API
expertise, participation in projects and connections to
people. Thus, they may be good candidates whoX can
follow on social networks, forums etc. Manual inspec-
tion of sample people recommendations obtained from
the APINet–GitHub prototype suggests that they ap-
pear to be relevant if we set a PPR threshold of at
least 0.0005. For such a threshold, we observe that
there are 63 people recommendations on average per
person (max=213, min=6).

2. Projects to Follow: X may be interested to keep abreast
of developments in projects that have high PPR scores
with respect to X. For our GitHub implementation,
we performed a sanity test to check whether projects
where people have contributed attain high PPR scores
even when we remove all person → project edges from
our network. Out of the 4443 people for whom we
could generate project recommendations, 3525 users
were recommended at least one of their own projects
within top 10 project recommendations.

2.3.3 Suggest API Interest Communities
An efficient way to group together related packages is to

cluster them based on their pair-wise scores. We create a
graph of package nodes that are connected by edges weighed
with their PPR scores. Next, we partition this graph into
communities such that the communities are densely con-
nected and nodes from different communities are sparsely

connected. We apply the Louvain community detection al-
gorithm [2] that maximizes modularity of communities. Once
we obtain communities of packages, we observe how people
are mapped to these communities by virtue of the packages
used by them. A person’s membership to different API com-
munities can give a good picture of his/her API expertise.
For the GitHub dataset, we find a total of 97 communities.
Of these, 64 communities have upto 20 packages, 13 commu-
nities have 20-40 packages, and the rest have > 40 packages.

2.3.4 Illustration
Figure 2 is a screenshot of APINet populated with data

from GitHub. It illustrates the profile of Drew Walters, a de-
veloper who uses libraries such as Apache Cordova, Google
Zebra Crossing and the RIM API to develop a Blackberry
plug-in for the PhoneGap project in GitHub. First of all, we
are able to recommend new social connections for Drew—
people who share similar expertise in mobile platform devel-
opment but have not collaborated with Drew directly on any
project. Next, we suggest new projects that he can follow.
We verified that all of the recommended projects can actu-
ally make use of Drew’s expertise because they have depen-
dencies on libraries such as the Blackberry API. Further, we
show that Drew is a member of a community that groups to-
gether different packages used in mobile development SDKs.
Note that, in general, a person can be associated with dif-
ferent communities.

3. RELATED WORK
Mining developer expertise from source code change his-

tory is a well studied topic e.g. in Expertise Browser [8].
Here the focus is to suggest experts for specific modules in
a given project, given how frequently and recently different
developers have modified different code pieces. This devel-
opment expertise is useful for intra-project tasks such as bug
assignment and knowledge transfer but would be difficult to
use in our scenario where the goal is to find inter-project
connections. Instead we focus on usage expertise of library
APIs which is a project-independent skill. Our current im-
plementation mines API profiles based on file-level changes
by a developer. However, we could further refine this by
tracking API usage at a method level [10].

The Codebook framework [1] is a social-networking-inspired
approach to create connections between artifacts and peo-
ple in software repositories. Various relationships between

Figure 2: Screenshot of a sample profile on APINet (http://code.comprehend.in:8080/apinet)

people and artifacts (such as a person fixing a bug or a
work-item mentioning a method name) are modelled in the
Codebook graph. Applications in this framework are built
by defining regular language reachability problems on this
graph. We are similar to their approach in modeling connec-
tions between software artifacts, but our method is different
as we look for statistical similarity between entities and use
it to find connections between people and projects based on
similar APIs used. The cross-project re-use of software li-
braries has been explored by CodeWeb [7], which focuses
on the code that uses these libraries. Our study revolves
around exploring relationships between such libraries and
the developers that make use of them.

Suggesting connections and identifying communities has
also been studied in the context of friend-based social net-
works such as Facebook, Twitter, LinkedIn. For example, in
[11] authors visualize communities in friend-based social net-
works using graph-based community detection algorithms,
while in [5] the authors try to identify changing community
structure over time in social networks. In this paper we
explored use of such community detection algorithms on a
network created from API usage information.

4. CONCLUSION AND FUTURE WORK
We have mined API usage profiles for a set of open-source

projects and observed that the use of third-party library
APIs can be considered a project-independent form of ex-
pertise. We have presented an approach for creating a social
network of developers using their API usage as the connect-
ing glue. Our initial implementation suggests to developers
other projects and people they might be interested in based
on similarity of their API profiles. We also detect communi-
ties by clustering together similar libraries and recommend
these to people having related experience. Several poten-
tial applications can arise out of such a social network. For
example, people and project recommendations could be use-
ful for project recruiting or team formation. An API-based
expertise search tool is useful for cross-project consulting
and our social network can be used to determine common
colleagues who can generate an introduction as well. Topic-
specific communities that are detected from the social net-
work can serve as platforms for information exchange around
a particular domain.

We plan to extend this work in two directions. Firstly,
the accuracy of API expertise calculation can be greatly im-

proved if we analyzed individual program fragments con-
tributed by developers instead of relying on heuristics based
on file-level package imports. One way of resolving type in-
formation is to rely on build systems such as Apache Maven,
from which accurate dependency information can be ex-
tracted. The use of central repositories for libraries will also
help in our second extension, in which we plan to extract
high-level descriptions of libraries from sources such as API
documentation, source code comments, etc. and use these to
improve our community algorithms to group together com-
peting offerings in the same domain. This can be used to
build additional applications to support, for example, a de-
veloper who needs to choose one of many libraries offering
similar functionality.

5. REFERENCES
[1] A. Begel, Y. P. Khoo, and T. Zimmermann.

Codebook: Discovering and Exploiting Relationships
in Software Repositories. ICSE, 2010.

[2] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008.

[3] S. Chakrabarti. Dynamic personalized pagerank in
entity-relation graphs. pages 571–580. ACM, 2007.

[4] T. H. Haveliwala. Topic-sensitive PageRank. WWW,
2002.

[5] J. Heer and D. Boyd. Vizster: Visualizing online social
networks. INFOVIS, 2005.

[6] G. Jeh and J. Widom. Scaling personalized web
search. WWW, 2003.

[7] A. Michail. Code web: Data mining library reuse
patterns. ICSE ’01, pages 827–828, 2001.

[8] A. Mockus and J. D. Herbsleb. Expertise Browser: A
Quantitative Approach to Identifying Expertise.
ICSE, 2002.

[9] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: bringing order to the web.
Technical Report. Stanford InfoLab, 1999.

[10] D. Schuler and T. Zimmermann. Mining Usage
Expertise from Version Archives. MSR, 2008.

[11] C. Tantipathananandh, T. Berger-Wolf, and
D. Kempe. A framework for community identification
in dynamic social networks. KDD, 2007.

