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Concurrency bugs are hard to discover and reproduce, even in well-synchronized programs that are free
of data races. Thankfully, prior work on controlled concurrency testing (CCT) has developed sophisticated
algorithms—such as partial-order based and selectively uniform sampling—to effectively search over the space
of thread interleavings. Unfortunately, in practice, these techniques cannot easily be applied to real-world
Java programs due to the difficulties of controlling concurrency in the presence of the managed runtime and
complex synchronization primitives. So, mature Java projects that make heavy use of concurrency still rely on
naive repeated stress testing in a loop. In this paper, we take a first-principles approach for elucidating the
requirements and design space to enable CCT on arbitrary real-world JVM applications. We identify practical
challenges with classical design choices described in prior work—such as concurrency mocking, VM hacking,
and OS-level scheduling—that affect bug-finding effectiveness and/or the scope of target applications that can
be easily supported.

Based on these insights, we present Fray, a new platform for performing push-button concurrency testing
(beyond data races) of JVM programs. The key design principle behind Fray is to orchestrate thread interleav-
ings without replacing existing concurrency primitives, using a concurrency control mechanism called shadow
locking for faithfully expressing the set of all possible program behaviors. With full concurrency control,
Fray can test applications using a number of search algorithms from a simple random walk to sophisticated
techniques like PCT, POS, and SURW. In an empirical evaluation on 53 benchmark programs with known bugs
(SCTBench and JaConTeBe), Fray with random walk finds 70% more bugs than JPF and 77% more bugs than
RR’s chaos mode. We also demonstrate Fray’s push-button applicability on 2,664 tests from Apache Kafka,
Lucene, and Google Guava. In these mature projects, Fray successfully discovered 18 real-world concurrency
bugs that can cause 371 of the existing tests to fail under specific interleavings.

We believe that Fray serves as a bridge between classical academic research and industrial practice—
empowering developers with advanced concurrency testing algorithms that demonstrably uncover more bugs,
while simultaneously providing researchers a platform for large-scale evaluation of search techniques.
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1 Introduction

Software testing is the predominant form of validating correctness for large real-world programs
due to its simplicity, wide-spread applicability, efficiency, and reproducibility. However, testing
multi-threaded programs remains challenging in practice, despite the fact that concurrency bugs
are among the most difficult to detect and diagnose [42, 45].

Take Java, which by several metrics is the most popular programming language with native
support for concurrent multi-threading [17, 64, 67]. Let’s assume that programmers write test cases
to validate the correctness of concurrent programs via assertions (e.g., that a parallel-sort operation
produces a sorted list). How can we check such properties? One might assume that developers can
leverage 20+ years of academic research on concurrency testing to run state-of-the-art techniques;
however, the state-of-the-practice is simply re-running concurrent tests multiple times to check
whether some assertion fails [2, 50]. This approach is neither effective nor reproducible—for example,
Apache Kafka’s issue repository is teeming with discussions on concurrency-induced flaky tests as
well as hard-to-replicate production failures [10]. What’s missing here?

Let’s step back and consider how a concurrency testing tool could help. Ideally, such a system
would (a) provide an efficient mechanism for controlled concurrency [66]; that is, to deterministically
execute a multi-threaded program along a fixed schedule (i.e., sequence of thread interleavings),
(b) provide support for systematically or randomly exploring thread schedules using state-of-
the-art search strategies (e.g., partial order sampling [75]) to uncover hard-to-find concurrency
bugs, and (c) target any multi-threaded program without requiring much manual effort (e.g., in
rewriting application code or using specialized testing DSLs). Unfortunately, no such general
testing framework for the JVM currently exists, despite decades of research on concurrency testing
algorithms. Why is that?

To understand this gap, we first look to systems described in prior work and map the design space,
identifying the subtle trade-offs which make concurrency control of JVM programs challenging.
Classical design choices include intercepting OS-level thread-scheduling decisions (as in RR [46],
the record-and-replay tool for Linux), by emulating the JVM completely (as in Java Path Finder
(JPF) [69]), by mocking concurrency primitives in the JDK (as done by Lincheck [33], for testing
concurrent data structures), or by pausing individual threads to defer their scheduling (as in
CalFuzzer [31]). As we will detail in Section 3, these design choices have impacts on (i) the scope of
what can be tested, owing to applicability (i.e., the extent to which arbitrary target programs are
supported), the expressibility of the search space (i.e., whether all interleavings can be deliberately
and faithfully exercised), and the maintainbility of the tool itself (i.e., how easily it can keep up
with evolving Java versions); as well as (ii) its bug-finding effectiveness, which for a given search
algorithm (e.g., random walk) depends on maximizing the run-time performance of executions and
minimizing the search space of which interleavings need to be considered.

Crucially, we note that the vast majority of prior academic work in this area has primarily focused
on evaluating specific testing techniques or search algorithms, not on maximizing the practical
applicability of their artifacts, which has historically been overlooked as an engineering concern.
While understandable from a scientific point of view, a side effect is that the gap between research
and practice is wider than ever before, with systems presented at OOPSLA 2024 [58] being limited
to Java versions that were superceded in 2017. In contrast, this paper explicitly investigates the
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research question: “Why is concurrency control with managed runtimes challenging, and what are
the fundamental system design requirements for maximizing applicability to aribtrary JVM targets?”

In order to make controlled concurrency testing effective and practically viable for managed
code, the key design philosophy we establish is to orchestrate thread interleavings (i) without
replacing existing concurrency primitives with mocks, while (ii) still encoding the semantics of
these concurrency primitives for faithfully expressing the set of all possible program behaviors.

In this paper, we present Fray, the first concurrency testing platform for the JVM designed
explicitly to maximize both general-purpose applicability as well as application-level bug-finding
efficiency, while also providing correctness guarantees and a framework for extensibility. Fray’s
objective is to find concurrency-induced assertion violations, run-time exceptions, as well as dead-
locks, in programs that are otherwise testable.! To perform concurrency control, Fray introduces a
mechanism called shadow locking, which mediates access to shared resources in a specified order
(the “thread schedule”) with extra locks whose semantics are coupled to concurrency primitives
used in the original program. Fray works on off-the-shelf JVM programs (compiled from Java,
Scala, Kotlin, etc.), requiring no manual annotation or source rewriting. Fray efficiently performs
deterministic concurrency control over the space of application-thread interleavings where context
switches occur only at synchronization points. Fray’s search space is sound and—in the absence
of data races and other sources of non-determinism (e.g., timers)—also complete; that is, every
concurrency bug discovered by Fray will be a true positive, and for every concurrency bug that can
manifest in the original program there is a corresponding interleaving that Fray can execute to
uncover it. In order to search for concurrency bugs, Fray can run various well-known algorithms
such as random walk, probabilistic concurrency testing (PCT) [4], and partial-order sampling
(POS) [75]. For debugging purposes, any saved interleaving can be deterministically replayed as
long as the program does not depend on other sources of non-determinism.

We empirically show that, as a platform, Fray outperforms currently available alternatives for
performing controlled random scheduling—rRr and JPF—in bug-finding effectiveness on 53 programs
from independently developed benchmark suites JaConTeBe [39] and SCTBench [66] (the latter
ported to Java). We also demonstrate Fray’s push-button applicability to 2,664 concurrent test
cases from mature software projects such as Apache Kafka [16], Apache Lucene [15], and Google
Guava [19]—we believe this is the largest evaluation of controlled concurrency testing on real-world
software. Fray has successfully identified 18 distinct concurrency bugs across these projects (16
confirmed and 12 fixed so far), including both previously unknown bugs as well as known bugs that
the developers could not previously reproduce for debugging.

Fray benefits both practitioners as well as the research community. For example, Elastic Search
Labs published a blog post about how Fray helped them diagnose and fix tricky concurrency bugs in
Lucene [34]. These bugs were exposed by running existing off-the-shelf unit tests with sophisticated
partial-order sampling (POS) [75], which to our knowledge has not been applied at this scale before.
Further, we were easily able to implement the bleeding-edge SURW algorithm [76] in Fray and
provide a complementary evaluation on thousands of test targets.

To summarize, the contributions of this paper include:

(1) We elucidate the requirements (Section 2) and map the design trade-off space (Section 3)
for performing practical concurrency control for programs running within the managed
environment of a JVM.

IThat is, the programs have entry points or test harnesses for executing logic that does not heavily depend on external
sources of non-determinism such as randomness, timing, or networked I/O.
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(2) We present Fray, a new platform for performing efficient concurrency control of JVM pro-
grams. We describe Fray’s key design choices involving shadow locking (Section 4) and make
the implementation available at https://github.com/cmu-pasta/fray.

(3) We empirically evaluate Fray by comparing to rRr and JPF on concurrency-bug benchmarks
from prior work, as well as on 2,600+ off-the-shelf tests from real-world Java software
(Section 5)—the results demonstrate Fray’s advantages in terms of performance, bug-finding
effectiveness, and push-button applicability.

(4) Fray provides a bridge across academic research and industrial practice, enabling researchers
to evaluate advanced concurrency testing algorithms on real-world JVM applications while
providing practitioners access to state-of-the-art concurrency testing techniques.

2 Problem Definition
2.1 Problem Scope

Our goal is to find concurrency bugs in Java-like programs that perform multi-threading, where the
bug is identified by an assertion violation, run-time exception, or a deadlock which only manifests
under certain interleavings of threads—that is, the bug is induced by a race condition. This use of
the term concurrency bug follows the style of the seminal work by Lu et al. [42], which included
atomicity violations, ordering violations, deadlocks, etc. but not data races. This nuance is subtle
but important.

In Java, the term data race refers to concurrent conflicting accesses (i.e., one write and another
read/write) to a non-volatile shared variable. Java’s weak memory model allows programs with data
races to exhibit behavior that cannot be explained by any sequence of thread interleavings [21].
Data races can be effectively identified by race detectors [12, 13, 47, 60, 62] and can be easily fixed by
using proper synchronization to control access to shared memory [40]. For our purposes, we assume
(but not require) that programs are free of data races since developers can use the aforementioned
techniques to remove them. Data-race-free Java programs exhibit sequential consistency [21]; so,
we can explain concurrency bugs to developers by demonstrating a specific sequence of thread
interleavings called a schedule.

Figure 1 depicts a sample (data-race-free) Java program which spawns two threads (Line 18),
one of which sets local x=0 and the other sets local x=1 (Line 6). The program often terminates
successfully; however, it can non-deterministically deadlock or trigger an assertion violation. For
example, if the thread that calls notify () (Line 11) enters the synchronized block (Line 7)
before the thread that calls wait () (Line 9), then the second thread will wait forever in a deadlock.
Otherwise, if the thread that calls not i fy () enters the synchronized block second and then
updates the shared volatile variable b (Line 14) before the thread waking from wait () can
do so, then the value of b will end up being 0, triggering an assertion failure (Line 20).

2.2 Concrete Objectives

We list three concrete objectives (O1-03) for designing an ideal controlled concurrency testing

platform for the JVM.

01: Real-World Push-Button Testing: We want a concurrency testing system that can run
on off-the-shelf JVM programs. This means (a) targeting general-purpose concurrency bugs that
violate arbitrary program assertions, instead of only checking specific properties such as lineariz-
ability [23, 33] or class thread-safety [38]; (b) eliminating the need for developers to manually set up
concurrency testing, such as writing specifications in a DSL, rewriting source code to use mocked
concurrency libraries, or implementing support for specific frameworks—ideally, we want a drop-in
wrapper for the java command; and (c) being able to run on mature real-world software—the
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1 class Foo extends Thread {

2 static Object o = new Object();

3 static AtomicInteger a = AtomicInteger ();

4 static volatile int b;

5 public void run() {

6 int x = a.getAndIncrement ();

7 synchronized (o) {

8 if (x == 0) {

9 o.wait ();

10 } else {

11 o.notify();

12 }

13 }

14 b = x;

15 }

16 public static void main(...) {

17 Foo[] threads = {new Foo(), new Foo()};
18 for (var thread : threads) thread.start();
19 for (var thread : threads) thread.join();
20 assert (b == 1);

Fig. 1. Sample Java program containing several concurrency primitives. The program is well synchronized
(i.e., no data races) but has concurrency bugs: it can non-deterministically run to completion, deadlock, or
trigger an assertion violation.

latter requires designing a system such that the engineering effort (on the tool maintainer’s part) to
support a variety of application uses and keep up-to-date with evolving JDK versions is minimized
in practice.

02: Deterministic and Faithful Concurrency Control: We want to be able to provide a thread
schedule during program execution such that it exhibits a specific sequence of thread interleavings;
this should allow perfect replay debugging if the only source of non-determinism in a program is its
concurrency. We also want to be able to control the thread schedule so as to employ randomized or
systematic search strategies for testing. Ideally, we want to ensure (a) soundness of expressibility: the
program behavior observed via any runnable thread schedule in the controlled testing system should
correspond to behavior that can manifest in the original program. (b) completeness of expressibility:
any concurrency-induced behavior from the original program can manifest with some expressible
thread schedule in the controlled testing system.

03: Support for Efficient Search-Based Testing: In order to achieve efficient concurrency testing
for JVM programs, we need to achieve two goals: performance and search-space optimization. First,
we want to minimize run-time overhead when deterministically executing a program along a
fixed thread schedule. Typically, this means executing at least the non-synchronizing program
instructions (e.g., memory reads/writes) at the same speed as during normal execution. Note that
executing a multi-threaded program by scheduling threads one at a time sequentially is acceptable;
during concurrency testing, we can parallelize the search algorithms by running different schedules
across available CPUs, which maintains overall testing throughput (i.e., execs/time). Second, we
want to minimize the search space for concurrency testing by (a) abstracting away the non-
determinism within the managed runtime (e.g., VM initialization, garbage collection, class loading),
and (b) only considering thread interleavings at synchronization points, which is sufficient for
data-race-free programs (ref. Section 4.2).
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Table 1. Summary of design choices and trade-offs for implementing concurrency control in the JVM. For
each design choice, the second column lists the impacted attributes (and corresponding objectives from
Section 2.2 in paranthesis).

Design Choice Impact (Objec- | Examples (Prior and Proposed Work)
tives)
OS-level intercep- | Search Space (03), | rr [48] and CHESS [45] intercept system calls, but cannot distinguish between
tion Performance (O3) | concurrency in Java application threads vs. JVM internals, and also cannot
search over thread schedules without restarting the JVM.
VM Hacking Performance (O3), | JPF [69] emulates the JVM, losing out on JIT optimizations and needing stubs
Applicability (O1), | for all native JDK methods needed for execution. DeJaVu [6] (Java 1.0) was a
Maintainability fork of the Sun JVM that did not keep up with Java versions.
(01)
Concurrency Scope (01), Lincheck [33] replaces synchronization primitives with custom implemen-
Mocking Maintainability tations, but is primarily designed for testing data-structure linearizability.
(01) JESS [65] (Java 7) and JMVx [58] (Java 8) use concurrency mocking for
general-purpose control, but cannot interoperate with the JVM’s use of con-
currency primitives in modern Java versions.
Directed Yielding | Applicability (O1), | CalFuzzer [31] (Java 6), IMUnit [25] (Java 6), and Thread-Weaver [20] (Java
Determinism (02), | 6) orchestrate thread execution by yielding / blocking based on external
Expressibility (O2) | hints or specifications about event ordering. Given the relatively simple
control mechanism, they cannot express or deterministically induce certain
interleavings with wait and notify. IMUnit can also produce spurious
deadlocks not present in the original program.
Shadow Locking | - Fray’s design enables push-button testing of arbitrary JVM programs, pro-
(Our design) vides guarantees of deterministic faithful control for all data-race-free pro-
grams, and is effective at finding concurrency testing due to its optimized
search space and high run-time performance.

3 Design Space and Related Work

In this section, we walk through various design choices encountered in implementing a concurrency
control platform intended to meet objectives O1-03. In doing so, we discuss systems described in
prior work, how their designs lead to trade-offs across various quality attributes that ultimately
affect one or more of our stated objectives, and what design choices Fray makes in response. Table 1
summarizes this discussion.

0OS-level Interception: At one extreme, system-level thread scheduling decisions can be recorded
and/or manipulated by intercepting system calls. For example, Rr [48] was originally designed for
record-and-replay of Linux programs, but it can be used for random concurrency testing via its chaos
mode [46] which shuffles CPU priorities during replay. CHESS [45] provides systematic concurrency
control for Windows programs by intercepting calls to Win32 concurrency APIs; it supports search
strategies such as iterative context bounding [44]. However, for programs running in a managed
runtime like the JVM, a system-level approach to concurrency control captures far more scheduling
decisions than necessary—for example, the non-determinism within JVM initialization, garbage
collection, and class-loading, neither of which affect program semantics—leading to a bloated search
space (ref. Section 5 for an empirical evaluation with rr). Ideally, we would want a platform that
can distinguish application threads from JVM internals.

D1: For Fray, we made the design decision to control only application-level concurrency and ignore
the concurrency within the JVM.
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VM Hacking: At the other extreme end, the Java Virtual Machine itself can be modified or replaced
in order to take full control of concurrent execution semantics. The most prominent example of
this approach is Java Path Finder (JPF) [69], which was originally designed for model checking
but can also be used for random state-space exploration. JPF simulates program execution using a
custom bytecode interpreter. This gives JPF full control over program execution semantics but it
affects performance because it cannot use run-time optimizations (e.g., the HotSpot JIT Compiler).
Moreover, JPF requires hand-written implementations of native JDK library methods, limiting
applicability when certain programs depend on classes whose native methods have not been
modeled, while also increasing the cost of tool maintainability as the JDK evolves (ref. Section 5 for
an empirical evaluation). An older system, DejaVu [6], modified the Sun JVM (Java 1.0) to force
determinism; unsurprisingly, the implementation has not kept up with modern Java.

D2: For Fray, we made the design decision to instrument JVM bytecode so as to run on existing
production JVMs.

Concurrency Mocking: A popular middle ground to concurrency control is to simply substitute
language-level concurrency APIs with mocks, either via source rewriting or IR instrumentation.
The mocks provide applications the familiar threading and synchronization interfaces, but under
the hood they can avoid using the native concurrency primitives completely and instead schedule
application-level tasks in a controlled manner. This approach works really well for languages
without managed runtimes. For example, Shuttle [1] and Loom [68] use concurrency mocking for
testing Rust programs. Kendo [49] and DThreads [41] provide deterministic multi-threading for
C/C++ programs by replacing pthreads.

However, for managed runtimes like the JVM, the concurrency mocking approach runs into
limitations. The main challenge is in dealing with interactions between application code under
concurrency control (e.g., a Java program), and the managed runtime, which is not (e.g., native C++
code within a JVM). A tool that replaces concurrency primitives in application code with mocks
inevitably runs into issues when the same primitives are manipulated by the JVM, in a way that
cannot be mocked. For example, consider the following facts:

e Java implements the synchroni zed keyword using locks on (hidden) object monitors [22],
which must follow block-structured access (i.e., matching acquires/releases within the same
method body).

e The thread co-operation instructions wait () and notify () respectively release and
acquire nested monitor locks implicitly (i.e., the JVM does this automatically) [22].

e When application code calls Thread. join (),ituseswait () internally; when that thread
terminates, the JVM implicitly calls not1 fyAl1l () to wake up joiners [52].

e The JVM can implicitly lock a class loader if it is not registered as parallel capable [51], but it
is also common for application code to synchronize on class loader objects explicitly [14].

Taken together, these facts have several complex implications for any tool that performs concur-
rency mocking. For example, if a tool replaces wait and notify methods with custom mocks,
then it must also replace all use of synchronized blocks since the mock methods cannot ac-
quire/release the original monitor locks given Java’s block-structuring requirements. But using
mocks for monitors (i.e., mocking synchronized) means that there is no longer mutual ex-
clusion during concurrent class loading or initialization when the JVM performs locking on the
original monitors of the class loader. And now that Thread. join () calls a mocked wait (),
it cannot observe thread termination when the JVM implicitly issues a not ifyA1l1l () using the
original (non-mocked) signal. Each such interaction needs special handling. When considering
thread pools, futures, etc. the list of workarounds needed goes on even longer. In practice, existing
mocking-based tools are explicitly or implicitly restricted in applicability, as follows.
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Lincheck [33] uses JVM bytecode instrumentation to replace a subset of synchronization prim-
itives with custom implementations for testing the linearizability [23] of concurrent data struc-
tures [28]. Lincheck requires an annotated list of data-structure APIs and then it systematically
invokes these methods concurrently from a fixed set of custom thread instances. Since Lincheck
creates and manages the application threads itself in this use case, it can better control the surface
of these application-JVM interactions.

JMVx [58], a record-and-replay system for the JVM, controls the non-determinism of thread
interleaving by utilizing Unsafe APIs to modify concurrency primitives directly. However, this
reliance on Unsafe APIs limits its applicability to Java 8, as these APIs were deprecated and
subsequently removed in later Java versions (circa 2017). For record/replay, JMVx must also deal a
host of other maintainbility challenges to adapt to newer versions of Java (see [58], §3.8-§3.9).

JESS [65], a Java port of CHESS, employs a more aggressive approach by replacing all concurrency
primitives. It implements method doubling to avoid interference with the JVM runtime, ensuring that
only application threads run the instrumented code (and not, for example, the classloader). While
innovative, this strategy inherently limits its applicability, as it cannot handle class constructors,
reflection, and virtual methods. These limitations frequently result in VM crashes and unpredictable
behavior (see [65], §5.2).

D3: For Fray, we made the design decision to avoid mocking any existing concurrency primitives so
as to streamline our engineering effort.

Directed Yielding: An alternative to concurrency mocking is to force threads to co-operatively
yield execution to a special scheduler at key points (e.g., at the end of a critical section). This
strategy is commonly used in tools where some information about interesting interleavings is
provided via an external input, such that the scheduler can decide which thread to suspend and
which to resume. For example, CalFuzzer [31] is an “active testing” framework for Java 6 that
supports various concurrency testing algorithms [32, 56, 59, 60]. Active testing relies on inputs from
an initial (imprecise) analysis phase that identifies potentially buggy locations. IMUnit [25] and
Thread-Weaver [20] provide a framework for unit testing of multi-threaded Java code by explicitly
specifying event orderings.

However, there are several limitations with this approach. Directed yielding tools are restricted
in applicability since they are not push-button. Extending their control mechanisms for systematic
testing is not straightforward, due to the complex semantics of primitives like monitors and
signals. For example, IMUnit can introduce spurious deadlocks if an infeasible set of orderings is
provided [25], sacrificing soundness of expressibility. CalFuzzer (made for Java 6) attempts to avoid
this issue by using a now-unsupported Unsafe API to query the status of monitors [61], but this
is not possible with modern Java. When dealing with Java programs that use wait and notify,
none of these tools can deterministically control which one of multiple waiting threads wakes up
when a not ify signal is received. Similarly, some interleavings such as a “delayed wake-up” (that
is, when a notifying thread releases and re-acquires a monitor lock before a waiting thread is woken
up) are impossible to simulate in all of these tools, thus affecting the completeness of expressibility.

D4: For Fray, we made the design decision to explicitly encode the semantics of existing concurrency
primitives in our thread control mechanism, so as to guarantee soundness and completeness of
expressibility.

3.1 Other Related Work

LEAP [24], ORDER [72], and CARE [29] enable record-replay-debugging of concurrent Java execu-
tions via object-centric logging. However, they cannot be used to pick specific thread schedules for
concurrency testing.
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Researchers have extensively studied the problem of flaky tests [3, 35, 57] that pass or fail non-
deterministically. Shaker [63] specifically targets flaky test detection due to concurrency issues,
but it does not have any mechanism for controlling the non-determinism either for a systematic
search or for deterministic replay.

Coyote [8] is a concurrency testing framework for C# programs using the Task Asynchronous
Programming (TAP) model. It uses source or binary rewriting to replace concurrency primitives
with custom mocks, similar to Lincheck and JESS. Likely due to similar complexities related to
interoperability between applications and the runtime, Coyote does not control concurrency for C#
programs that use bare threads instead of the TAP model.

Razzer [27], SnowCat [18], Ozz [26], DDRace [74], Conzzer [30], MUZZ [5], and RFF [71] use
various forms of fuzzing to find data races, deadlocks, or concurrency-related program crashes
in C/C++ programs or the Linux kernel. Periodical scheduling [70] parallelizes threads in defined
periods instead of searching over fixed sequences of interleavings—this is achieved through Linux’s
deadline CPU scheduler, which is an OS-level control.

4 Design of Fray

In this section, we describe Fray, a new platform for concurrency testing of JVM programs designed
to meet our specified objectives effectively (ref. Section 2 and Table 1).

Overall Architecture: Fray is designed to work on arbitrary JVM programs as a drop-in replace-
ment for the java command or to extend existing JUnit tests with a simple annotation. Fray
instruments the JVM bytecode of the target program on-the-fly and injects its own run-time library,
which spawns a separate scheduler thread. Depending on provided input parameters, Fray either (a)
executes the program many times using a provided search strategy (e.g., random, PCT [4], POS [75],
and SURW [76]) and, if a bug is encountered, outputs a file containing the thread schedule, or (b)
replays a single program execution with a given thread-schedule file for debugging.

Assumptions and Guarantees: Fray is designed to always be sound during testing; that is, every
reported bug corresponds to an actual behavior that can manifest in the original program. Fray
makes two important assumptions to provide a guarantee of completeness, which means that every
concurrency bug can be reproduced by some thread schedule in its search space (though there
is no guarantee that a particular search will find it), and to support faithful replay for debugging
purposes. First, Fray assumes that the only source of non-determinism in the program is due to
concurrency; that is, the program does not make use of Random, system I/O, or any timer (e.g.,
Thread. sleep)—this is reasonable for test suites, though Fray also supports relaxing these
assumptions for real-world use cases (ref. Section 4.5). Second, Fray assumes that programs are
free of data races (ref. Section 2.1 for why this matters). If the target program contains data races,
Fray can still be used but its search space might exclude some theoretically observable behaviors
(ref. Section 4.5 again for relaxing this assumption).

4.1 Concurrency Control in Fray

The key design principle in Fray is to orchestrate thread interleavings without replacing existing
concurrency primitives with mocks, while also encoding the semantics of these primitives to
faithfully express the set of all possible program behaviors. Based on this design philosophy,
Fray implements a protocol called shadow locking which ensures that only one application-level
thread executes at a given time and allows Fray to control the order in which threads interleave at
synchronization points.
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1 class Foo extends Thread {
2 static Object o = new Object();
3 static AtomicInteger a = AtomicInteger();
4 static volatile int b;
5 public void run() {
6 '/ Let t I cad ()
t a
7 Sy - 1ock ()
8
t e
9 Satomic(a) -lock ()
10 int x = a.getAndIncrement ();
t c
11 Satumic(a) .unlock ()
12
t ock
13 Smonm(o) .lock ()
14 synchronized (o) {
15 if (x == 0) {
16 int k = Sémnimr(o) .getHoldCount () ;
17 St .unlock () X k times
monitor(o)
18 do {
19 o.wait ();
20 } while (!Smomtor(o).t_yLu,,k()),
21 S .lock() X k-1 times
monitor(o)
22
23 } else {
24 o.notifyAll();
25 }
26 }

t 1 ocl // monitorexit
Smonitor(o) .unlock () // monitorexit

t g
Svolatile(b) -lock ()

30 b = x;

31 Séolatile(b) .unlock ()

32

33 Srtun .unlock ()

34 }

35 void main() { */ }

36 )

Fig. 2. Fray’s instrumentation (highlighted) of the program from Fig. 1, demonstrating shadow locking for
concurrency control. Each S? is a lock instantiated dynamically by Fray and initially held by Fray’s scheduler
thread; the shadow lock will be released by Fray when it wants to schedule thread t.

Shadow Locking: Fray instruments program classes to add extra synchronization around (but
not to replace) concurrency primitives. Fig. 2 demonstrates how Fray would instrument class Foo
from Fig. 1 with additional lock operations.

A shadow lock St is a lock associated with thread ¢ and resource r. Whenever a thread t wants
to access resource r, it must first acquire S’. Shadow locks can control access to the monitor of an
object o, denoted as S ;1 onitor (o)’ ACCESS to a volatile variable or atomic value v, denoted as S ‘folatﬂe )

orS respectively; or the permission to start thread execution in the first place, denoted as

;tomic(u)
S, (for all application threads except the main thread).

Shadow locks are instantiated by Fray dynamically as needed, and immediately acquired by
Fray’s scheduler thread so that no application thread can acquire them by default. Fray tracks the
application’s shadow lock operations (such as 1ock and unlock) in order to maintain metadata
about threads and their ownership of—or attempts to acquire—shadow locks. Fray maintains the
following mutual exclusion invariant: if any application thread t owns a shadow lock S! for
some resource r, then no other application thread ' can own the corresponding shadow lock S?’
for the same resource r.

Initially, only the main thread is running and it owns no shadow locks. If a thread is running,
it will continue to run until it terminates or attempts to acquire a shadow lock (or executes
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Object.wait (), details later). In the steady state, Fray maintains the invariant that at most one
application thread can be running and all other application threads (if any) are blocked waiting to
acquire a shadow lock (or be notified with a signal, details later). When no threads are running,
Fray’s scheduler picks a next thread ¢ to run based on a specified thread schedule (i.e., sequence
of threads ty, t, ... to interleave) and releases the shadow lock S that ¢ is waiting to acquire. Fray
uses its internal meta-data to ensure that it will only schedule a thread t if it can be guaranteed
that ¢ will make progress (i.e., it can acquire the resource r). If no such schedulable ¢ exists, then
a deadlock is reported. When an application thread releases a shadow lock, the Fray scheduler
immediately re-acquires it.

To understand how Fray instruments Java programs to insert shadow locks, see Figure 2, which is
the instrumented version of the example from Fig. 1, with Fray’s changes highlighted. Thread start:
Lines 7 and 33 are inserted to introduce the shadow lock S!  for controlling thread execution, so
that new threads are blocked immediately after Thread.start () until Fray determines that
no other thread is running. This is fine, because under the assumption of data-race-freedom, no
event in the newly spawned thread can logically “happen before” any event in the creating thread
until the latter has reached at least one synchronization point after the call to Thread.start ().
Monitor locks: Lines 13 and 27 wrap a shadow lock Sﬁmmtor(o) around the synchronized (o)
block (Line 14). A similar logic applies when a program uses RentrantLock or Semaphore
classes. Atomic and volatile: The atomic increment at Line 10 and the volatile memory access at
Line 30 both propagate information across threads [21, 55]. Fray conservatively treats these as
synchronization points, inserting shadow locks S! . (a) (at Lines 9 and 11) and S | . b) (at
Lines 29 and 31) respectively around these accesses.

Handling wait and notify :In Java, the semantics of wait/notify make controlling concur-
rency non-trivial. Object .wait () can only be invoked by a thread holding a (possibly nested)
lock on the object’s monitor, and this call releases the lock (to full nesting depth) and blocks the
thread. Correspondingly, Object .notify () can only be invoked by a thread holding a lock
on the object’s monitor, and when this lock is eventually released the JVM can resume any one
thread that was blocked wait-ing on this object. Similarly, Object .notifyAll () marks all
corresponding wait-ing threads as ready to be woken up by the JVM. The waiting thread(s) must
have been in the middle of a (possibly nested) synchronized block; the lock is thus regained (to its
original nesting depth) upon waking.

Concurrency control of wait/not1ify is hard because these methods are implemented natively
in the JVM; from Java code, there is no way to control which thread(s) the JVM will wake up
or to deterministically replay its choice later. Prior solutions either re-implement the entire JVM
(e.g., JPF)—which introduces performance overhead and technical debt—or replace the call with
custom mocks (e.g., Lincheck)—which is problematic, since the mocks cannot update the state of
monitor locks in the same way (due to JVM restrictions on block-structured locking), and not doing
so properly leads to compatibility issues when the JVM implicitly calls wait/notify on shared
objects (e.g., when a Thread terminates).

Fray solves this problem using shadow locks as follows. Calls to o . wait () (e.g. Line 19 in Fig. 2)
are (1) preceded by a full release of the shadow lock corresponding to o’s monitor (Lines 16—17),
(2) wrapped by a loop (Lines 18-20) which only exits when the JVM wakes up the thread and Fray
also makes the shadow lock available, as explained in the next paragraph. If the shadow lock is
unavailable (i.e., tryLock () at Line 20 returns false), the thread loops back into the wait ().
If available (i.e., tryLock () returns true), the loop exits, and the thread regains the shadow lock
to its original nesting depth (Line 21). Fray also changes each invocation of o.notify () to
o.notifyAll () (Line 24). This ensures that, instead of the JVM picking one arbitrary thread
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to resume, all waiting threads are woken, but only one thread ¢, deterministically chosen by Fray,
continues execution (by making only its corresponding shadow lock available) while others return
to a waiting state. These semantics are equivalent to the original program! The performance cost
of the extra wake-ups is not significant enough to slow down Fray relative to other approaches (ref.
Section 5.2).

So how does Fray decide when to release the shadow lock for a waiting thread to make it
exit the do-while loop? When a thread ¢ executes o.wait () in the original program, Fray adds
t to a set of threads called waiting,. Then, for an invocation of o.notify () in the original
program, Fray deterministically removes one thread from waiting; similarly, for an invocation of
o.notifyAll () inthe original program, Fray removes all threads from waiting,. At a scheduling
step (that is, when no application threads are running), Fray can release the shadow lock of a thread
only if it is not contained in any waiting, set and if it does not violate the mutual exclusion invariant
described earlier. This scheme allows Fray to express not just immediate but also delayed wake-ups,
where a notifying thread releases and re-acquires a monitor lock before the waiting thread can be
awoken. Finally, Fray can also simulate spurious wake-ups (i.e., without a corresponding notify,
which is legal) by encoding a special value in the thread schedule for removing a specific thread
from waiting,,.

To summarize, while Fray explicitly encodes the semantics of wait and noti fy by maintaining
state about waiting and notified threads, it does not replace the original calls—thereby allowing the
application code and JVM to natively inter-operate with shared concurrency primitives such as the
original object monitor locks, consistent with our design philosophy.

Other concurrency primitives: Fray supports all the standard locking primitives like Reen-
trantLock, Semaphore, etc. Fray handles Condition.signal () /await () exactly like
wait/notify, and it handles LockSupport . park/unpark as well as CountDownLatch
using similar meta-data but simpler instrumentation. The JDK implements Thread. join () using
Thread.wait (), where the JVM calls Thread.notifyAll () upon thread termination; so,
Fray does not need special handling. Fray does instrument calls to Unsafe . compareAndSwapx,
just like atomic/volatile accesses, as well as Thread. interrupt (), whose details we omit here
for brevity.

4.2 Soundness and Completeness

We provide informal sketches of our proofs of expressibility (Section 2.2, O2), whose details are
available in an extended online version of this paper [37].

4.2.1 Soundness. We claim that every concurrency bug encountered by Fray can manifest in
the original program. To see why, note that Fray only changes the original program by adding
shadow-locking instrumentation as shown in Figure 2. Adding extra synchronization does not
change program semantics, though it can introduce new deadlocks. Fray’s execution deadlocks only
if the original program could also deadlock, and this follows from how Fray couples each shadow
lock S/ to the program’s attempts to acquire the underlying resource r. Apart from synchronization,
Fray also inserts a do-while loop for Object .wait () and changes Object.notify () to
notifyAll (), but this is equivalent to the original semantics.

4.2.2 Completeness. We have formally modeled a subset of Java operational semantics to prove

Fray’s completeness guarantee [37]. Using these semantics, sequentially consistent executions of the
.. . to,ep t1,eq
original program can be represented as traces, which are sequences sy — s; — sz ..., where each

s; is a program state, and each (t;, ;) represents a state transition to s;;; by executing an instruction
e; from thread t;. An instruction can either be a synchronization instruction (e.g., monitorenter
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or atomic) or a thread-local instruction (e.g., read or branch), depending on whether or not
it creates a happens-before relationship as per the Java memory model [21]. Let next(s, t) be the
instruction that thread t would execute if scheduled at state s, or be undef if the thread ¢ cannot
run. Then, we define a sync-point-scheduled (SPS) trace which is a special kind of trace where
t; # tiy1 = next(s, t;) € {undef, monitorenter, wait, atomic, . . . }; that is, thread t; yields control to
another thread only if it is blocked/terminated or about to execute a synchronization instruction.
Fray’s shadow locking protocol produces SPS traces. We can then state the completeness theorem:

THEOREM 1. For every assertion violation (evaluated using a predicate made up of thread-local
instructions) or deadlock that manifests in a trace 7, there exists an SPS trace ' that exhibits the
corresponding assertion violation or deadlock.

to, t, .
Proor. (Sketch) Consider any program trace sy e G By the assumption that

. . cps ti.e; tiv1,€is1
programs are data-race-free, we can swap any pair of consecutive transitions Si — Si+1 —  Si+2,

where t; # tiy1 and e;, e;41 are not synchronization instructions, to get a new valid subtrace

tiy1,€iy ti,e; . . .
5 5 i, — Si;, such that s;;» = s’ ,. In other words, thread-local instructions across different
threads are independent and can be reordered without affecting the resultant state. We can thus
perform a series of such reorderings on a program trace exhibiting a concurrency bug until we get

(a prefix that is) an SPS trace exhibiting the same bug. O

Finally, we can show that Fray’s shadow locking protocol can enumerate all SPS traces, since
Fray is allowed to release a shadow lock for any thread that is able to acquire the underlying
resource. Thus, Fray’s search space is complete under the data-race-free assumption.

4.3 Scheduling and Search Strategies

Once we achieve full concurrency control—that is, we can choose arbitrary schedules to determinis-
tically execute specific thread interleavings—we can now hunt for concurrency bugs by running
search strategies. In Fray, search strategies are plug-ins that implement the logic for choosing the
next schedule to run, given some prior search state. The schedules are instantiated dynamically;
that is, the program executes a single thread until it is blocked (e.g., when attempting to acquire
a shadow lock). Then, Fray makes a callback to the search strategy, providing the set of enabled
threads (that is, threads which Fray knows will make progress if scheduled). The search strategy
then returns the next thread to execute.

The search strategies can either be systematic (e.g., depth-first search) or randomized. We do not
invent any new algorithms; rather, we look to prior work for picking good strategies. Thomson et
al. [66] empirically studied several concurrency testing algorithms including systematic depth-first
search, iterative context bounding [44], iterative delay bounding [11], probabilistic concurrency
testing (PCT) [4], and the coverage-guided Maple algorithm [73]. They found that PCT was most
effective, followed by a naive random walk. Subsequently, Yuan et al. [75] introduced the partial-
order sampling (POS) algorithm that was shown to outperform PCT. Finally, Zhao et al. [76] very
recently introduced the selectively uniform random walk (SURW) technique, which provides strong
guarantees on uniformity of sampling over the interleaving space.

So, we currently support the following strategies in Fray: (1) Random Walk—At each scheduling
step (i.e., callback), pick one of the enabled threads uniformly at random. (2) PCT—randomize
priorities for all threads, and, at each step, schedule the thread ¢ with the highest priority; if this is
one of d randomly chosen steps (where d is a user-defined depth parameter), then set ¢ to the lowest
priority. (3) POS—randomize priorities for all threads, and, at each step, schedule the thread ¢ with
the highest priority; also reassign random priorities for all other threads competing for the same
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1 class FooTest {

2 @ConcurrencyTest (/# optional args */)

3 public void testTwoFooThreads () {

4 /* same code as Foo.main() in Figure 1 %/ ...

5 }

6}

7 // Optional args for @ConcurrencyTest

s // iterations=<integer> (default is 1000)

9 // scheduler=[Random|PCT|POS|SURW]Scheduler.class (default is POS)

10 // replay=<filename> to enable replay mode (default is empty, for testing)

Fig. 3. Typical usage: A code example showing how a user can annotate a JUnit 5 test method to run existing
test code with Fray performing either testing with an optionally specified scheduler for a number of iterations,
or performing replay with a given interleaving file saved by a previous run of Fray.

Bug found in testTwoFooThreads() iteration 3/1000, you may find detailed report
< and replay files in /path/to/project/fray-report
Exception java.lang.AssertionError: expected:<1> but was:<0>

at FooTest.testTwoFooThreads (FooTest. java)

Fig. 4. Example of console output when Fray detects a concurrency bug (after running the test in Fig. 3),
showing the assertion failure and indicating where detailed reports and replay files can be found for debugging.

resource that ¢ is about to acquire. (4) SURW—takes a list of interesting events as input and, at
each step, determines a thread to execute using weights proportional to the number of remaining
interesting events per thread.

Fray is designed to be easily extensible with new search algorithms. For example, we encountered
the SURW paper (which was recently presented at ASPLOS’25) much after Fray’s initial implemen-
tation and evaluation; it took one of the authors only one day and ~200 LoC to implement this
algorithm as one of Fray’s scheduling strategies.

4.4 End-to-End Usage

Fray can either be run on the command-line or as an extension to JUnit 5 tests with Gradle or
Maven plugins that we make available on the Maven Central Repository.

Command-Line Mode: To use Fray to test the program in Figure 1, simply replace java Foo
with fray Foo. This will repeatedly run the program using a random-walk thread scheduler
until it is terminated or a bug is found. Command-line options ——scheduler and ——iter can
specify the scheduling algorithm and the number of iterations respectively.

When a test fails, Fray provides detailed failure information, including the specific exception
encountered and the location where detailed reports and replay files are saved. The user can then
run fray —--replay=<file> Foo to perform replay debugging. The replay file records all
the random decisions made during the original run, including which thread to execute at each step
and when to trigger spurious wake-ups. While the recording file is not directly human-readable,
we provide an Intelli] IDEA plugin for visualizing thread interleavings within the IDE [36].

Testing Framework: More commonly, we expect users to integrate Fray into their existing test
suites that provide testable entry points and which already configured for complex build scenarios.
Figure 3 demonstrates how a developer can test the Foo class shown in Figure 1 using the Fray
JUnit 5 extension. To execute a test using Fray, developers need only annotate the test method
with @ConcurrencyTest (.. .) and optionally specify configuration parameters such as the
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number of iterations to execute and the scheduling algorithm to employ (Lines 8 and 9, which also
indicate the default choices). When a test fails, Fray provides detailed failure information along with
a recording file, as shown in Figure 4. For debugging, users can specify the recording file name as
an option to the @ConcurrencyTest () annotation (see Fig. 3 Line 10). As such, a test method
annotated with replay is like a unit test that executes a single specified thread schedule. This is
useful for step-through debugging within an IDE, as the replay configuration is only intended for
local debugging and not for commiting to version control.

4.5 Relaxing Assumptions

Data-Race-Freedom: Since Fray assumes that programs are data-race-free by default, performing
context switches (via shadow locks) only at synchronization points is sufficient to guarantee
completeness of its search space (ref. Section 4.2). If a program has data races, then Fray can still
be used but its search space might miss some bugs that only manifest when (1) threads interleave
between unsynchronized shared-memory accesses or (2) the application exhibits non-sequentially-
consistent behavior. Although Fray cannot solve the latter issue, there is some support to address the
former: a special flag (——memory) can be used to force Fray to insert shadow locks (and therefore
perform context-switching) around every shared-memory access, not just the atomic and volatile
fields. Naturally, this introduces a large performance cost. We do not explicitly evaluate this mode
in the rest of this paper as it is not the primary use case; we believe users should use dedicated
data-race detectors that can also address Java’s weak memory model before running Fray.

Dealing with non-determinism apart from concurrency: Even if Fray is run on generally
testable code, there are some forms of non-determinism that are common in real-world use cases.
Fray handles the most common code patterns that we have observed in open-source projects.

First, test code sometimes uses Thread.sleep () and applications often use timer-based
synchronization primitives, e.g., Object .wait (timeout), Condition.awaitNanos (),
or LockSupport .parkNanos (). Fray automatically rewrites the sleep to a no-op and the timed
waits tobasicwait ()/await () /park () without timeouts; none of this affects completeness. For
the latter group, since Fray models “spurious” wake-ups that can happen at any time, this covers the
behavior where the timeout triggers, given that the two cases are semantically indistinguishable [53].

Second, application code that makes use of Object .hashCode () can have subtly different
behavior across runs (e.g., whether or not two keys in a hash-map collide in the same bucket). To
enhance deterministic replay, Fray’s recording files save object hash codes in the order in which
the application read them and then reproduces these values during the replay phase. Similarly, Fray
records and replays system clock values (e.g., System.nanoTime ()).

Third, it is common for classes to run static initializers to set up global state. Because this logic
only runs once, if there is any concurrency in the static intializers then the saved recordings for
schedules encountered during the n-th iteration of random testing will not align with the order of
events during replay-from-scratch. We provide a special flag (——dummyRun) in replay mode to run
a warm-up iteration before attempting deterministic replay hoping to skip the static initializers.

Finally, Fray does not record/replay calls to java.util.Randomn or file I/O, since most test
code uses these APIs in a manner that does not affect control flow (e.g., generating UUIDs, reading
static config files, or logging messages). So, Fray’s replay mode simply performs the original calls
for all such APIs, at the risk of introducing flakiness if the application deviates from these norms.

4.6 Maintainability

Fray currently runs on Java 21 (the latest long-term support version at the time of writing) and
is compatible with targets compiled for older Java versions as well. Unlike some tools such as
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CalFuzzer or JMVx, Fray does not depend on Unsafe APIs or JVM-vendor-specific features, mak-
ing it robust to changes in JVM implementations. With Fray’s design, we only need to insert
shadow locks around the usages of concurrency APIs listed in the language reference [22] and
the JDK documentation [54]. For example, we recently added Java 23 support with ~50 lines of
code. This was necessary because JDK 23 replaced LockSupport .park/unpark with Un-
safe.park/unpark for thread parking operations in certain concurrency primitives, requiring
us to update our instrumentation accordingly.

5 Evaluation

Our evaluation aims to compare Fray against a representative concurrency testing tool from each
design choice category shown in Table 1. Among the available tools, only Rr (OS-level interception),
JPF (VM Hacking), and Lincheck (concurrency mocking) are actively maintained and compatible
with contemporary versions of Java (11-21). Lincheck, however, is primarily designed for testing
data-structure linearazibility instead of arbitrary Java applications; whereas RR and JPF are explicitly
general-purpose. Unfortunately, all of the directed yielding tools CalFuzzer, IMUnit, and Weaver
support only Java 6, which is deprecated since 2018 and not supported by any of our evaluation
benchmarks. To confirm our claims from Section 3, we were able to run CalFuzzer on a virtual
machine with Java 6 and verified its lack of expressibility in controlling the thread wake-up order
after notify (), as well as the inability to simulate certain interleavings such as delayed and
spurious wake-ups.

Our evaluation addresses the following research questions:
RQ1: How does Fray compare to Rr and JPF concurrency control in terms of bug-finding effectiveness
on independent benchmarks?
RQ2: How does Fray compare to Rr and JPF in terms of run-time performance on the same benchmarks?
RQ3: Can Fray be effectively applied to real-world software in a push-button fashion? How does it
compare to other tools?
RQ4: Can Fray be used for special-purpose testing of concurrent data structures? How does it compare
to Lincheck in terms of bug-finding scope?

Experimental Setup: For RQ1 and RQ2 only—to ensure that we are only comparing different
design choices for concurrency control (ref. Table 1) and not the variations in search strategies, we
fix all tools to use a random search: “Fray-Random” and “JPF-Random” explicitly use a random walk
to schedule threads, whereas “Rr-Chaos” uses RR’s chaos mode [46] to randomize thread priorities
during record-and-replay. For RQ3 and RQ4, we also run modern search strategies (ref. Section 4.3):
Fray-PCT3 (with depth d=3)?, Fray-POS, and Fray-SURW?. All experiments are performed on an
Intel Xeon processor with 16 cores and 187 GB of memory.

Benchmarks and Metrics: For RQ1 and RQ2, we target concurrency-bug benchmarks from prior
work: SCTBench [66] and JaConTeBe [39]. SCTBench is a set of micro-benchmarks of concurrency
bugs using the pthreads library and with explicit assertions. For our evaluation, we manually
translated the subset of 28 programs with the “CS” prefix to Java (as these were self-contained and
also used in prior work [7, 8, 70, 71])—the translation converted pthreads mutex lock operations
to Java synchronized blocks. For programs with data races, we replaced unsynchronized
memory accesses with corresponding volatile accesses in the Java translations; this is sound
because the bugs intended by the benchmark are other types of race conditions (e.g., atomicity
violations) not the data races themselves. So when we mark variables as volatile—as a real user

2We choose depth 3 because prior work [66] showed it to be the most effective for revealing bugs.

3We randomly sample 20 memory locations and mark all their access events as interesting, as suggested by the original
authors.
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would do if they found the data race via a race detector and then patched it—the atomicity bug still
remains. JaConTeBe is a benchmark suite derived from real-world concurrency bugs in open-source
Java software [39]. The original suite includes both application bugs and OpenJDK bugs—we use a
subset of 25 bugs whose test cases have oracles and which come from application projects (such as
Apache Log4], DBCP, Derby, and Groovy). For each of the 53 benchmark programs, we run each
tool’s random search for up to 10 minutes and repeat this experiment 20 times to get statistical
confidence.

For RQ1, we measure the wall clock time and the number of executions to find each bug if
discovered in some run.

For RQ2, we measure run-time performance by comparing the number of executions per second
on the 53 programs with the randomized search running the whole 10 minutes whether or not a bug
is encountered,” and then count the number of iterations of the search completed. This approach
allows us to reliably measure steady-state performance for all tools.

For RQ3, we target over 2,600 test cases from real-world open-source software projects: Apache
Kafka@43676f7 (“streams” module, 1M LOC), Apache Lucene@33a4c1d (857K LOC), and Google
Guava@635571e (353K LOC).

For RQ4, we evaluate Fray on the 9 new bugs discovered by Lincheck as reported in its original

paper [33].

5.1 RAQT1: Bug-Finding Effectiveness

Figure 5 shows the cumulative distribution of bug-discovery times using the three tools across 53
buggy programs from the two benchmarks, averaging over 20 repetitions.

In SCTBench (Fig. 5a), Fray-Random is most effective, detecting all 28 bugs after 100 seconds on
average. JPF-Random quickly detects 20 bugs within the first 10 seconds on average but cannot
identify the remaining 8 bugs even after running for 10 minutes on each target. RR-Chaos is the
least effective, finding only 8 bugs during the experiment. JPF missed one bug due to its incomplete
implementation of AtomicLong. set (). The remaining 6 bugs involve atomicity violations—
concurrent read/write operations requiring specific thread interleavings to manifest. JPF likely
failed to detect these due to limited exploration caused by its performance overhead (see also RQ2).
For example, in one benchmark program (TwoStage100Bad) Fray explored 14,800 schedules in
the time bound whereas JPF could explore only 1,700 schedules.

In JaConTeBe (Fig. 5b), Fray-Random and rRr-Chaos show the highest effectiveness, detecting 18
bugs on average. JPF-Random only identifies 7 bugs. It is worth noting that JPF failed to run 16 tests
due to compatibility issues often stemming from missing support for certain JDK APIs, highlighting
the importance of applicability. A burst occurs around 30 seconds for Rr because it lacks a built-in
deadlock detector, relying instead on the JaConTeBe harness, which runs its deadlock detector
every 30 seconds. Why did Fray miss 7 bugs? We identified that 6 bugs are caused by data races
(which is out of scope for Fray); of these, JPF identified one and Rr-Chaos identified two. The
seventh miss for Fray was a real false negative—an undiscovered deadlock—that JPF also failed to
detect but was successfully identified by rr.

We have claimed that Fray’s design optimizes the search space when compared to OS-level
concurrency control, since we only focus on application threads. Figure 6 evaluates this via a proxy:
measuring the average number of executions for the random search to find each bug. As predicted,
across both benchmarks, Fray and JPF require a similar number of executions to find most bugs. In
contrast, RR-Chaos can sometimes require up to 100X more executions to detect the same bugs.

4If we stop the search when a bug is found, then the performance appears to be dominated by the JVM startup time when
bugs are found quickly.
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Fig. 5. Comparison of bug-finding effectiveness over time (higher and quicker is better) on 53 programs across
two benchmark suites, with a search timeout of 10 minutes per target. The y-axis shows the cumulative
number of unique bugs found, while the x-axis shows execution time on a logarithmic scale from 0.1 to
600 seconds. Lines and shaded areas represent means and 95% confidence intervals, respectively, across 20
repetitions. The "Total Bugs" line (red dash-dot) represents the theoretical maximum discoverable bugs.

Note that JaConTeBe is designed to be a reproducible bug benchmark; so, some bugs can be found
in just 1 iteration.

Overall, Fray consistently demonstrates superior bug-finding effectiveness on independent
benchmarks, identifying 70% more bugs than JPF and 77% more bugs than rr. JPF is effective when
analyzing micro-benchmarks from SCTBench, but suffers from low applicability when analyzing
benchmarks derived from real-world software in JaConTeBe.

Fray demonstrates superior bug-finding effectiveness, identifying 46 out of 53 concurrency bugs
(87%) across both benchmarks, while JPF detected only 27 bugs (51%) and rr found 26 bugs (49%).

5.2 RQ2: Run-time Performance

Figure 7 shows the average execution speed for each tool on the 53 benchmark programs. Fray is the
most efficient, with a median speedup of 10x over JPF and 457X over RR. The performance overhead
of JPF is easy to understand: it runs a custom JVM interpreter and so cannot take advantage of
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Fig. 6. A proxy for search space evaluation: Comparison of number of executions (y-axis, in log scale, lower
is better) needed by the three tools to find each of 53 bugs (x-axis), averaged across 20 repetitions. Missing
markers imply the tool failed to find the bug within the 10-minute timeout in any repetition. The background
shading distinguishes between the two benchmark suites.
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Fig. 7. Run-time performance of each tool, measured as average executions per second (y-axis, in log scale,
higher is better) running the random search for 10 minutes on each of the 53 benchmark programs (x-axis).
Missing markers indicate instances where the tool failed to run the program at all. The background shading
distinguishes between the two benchmark suites.

JIT optimizations. But what about Rr, which runs the HotSpot JVM natively? First, RR cannot
distinguish the application from the managed runtime, and so it must restart the JVM for each
execution. Second, the OS-level concurrency control over the whole JVM process requires recording
lots of unnecessary information (e.g., all the non-determinism in the JVM), which is expensive.
Fray’s use of shadow locks for concurrency control makes it very efficient.

In order to measure the overhead over vanilla uninstrumented (and therefore non-deterministic)
execution, we also include a baseline called Original, which simply runs the target test repeatedly
in a loop for 10 minutes on a single CPU core. However, to do this fairly, we also need to keep
the loop going even when we encounter deadlocks—we were only able to do this for SCTBench,
by modifying the source code to prevent the actual deadlock, but not JaConTeBe, which is not
open-source. The results in Fig. 7 show that in SCTBench, the instrumentation and scheduling
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Table 2. Results of concurrency testing on real-world software. “Tests run” represents the number of test
cases that can be executed and whose thread interleavings searched over without internal tool errors. The
second column shows the number of test failures identified by each technique (and the subset of failures that
are caused by wall-clock-based timed waits). The last column presents the total number of reported bugs
(along with the subset confirmed by the developers).

Technique Test Run Test Failures Reported Bugs
(10 mins each)  (Time-related) (Confirmed)

g | Frav-PCT3 279 126 (60) 6 (6)

3 | Fray-POS 279 162 (66) 10 (9)

& | Fravy-SURW | 279 165 (90) 8 (8)

éﬂ Fray-Random | 279 92 (10) 8 (8)

S JPF-Random 0 0 (0) 0(0)
RR-Chaos 278 4(1) 2(2)
Fray-PCT3 1186 3(3) 0 (0)

o | FrRAY-POS 1186 7(3) 4(3)

§ Fray-SURW 1186 4 (4) 0 (0)

5 | Fray-Random | 1186 3(3) 0(0)
JPF-Random 0 0 (0) 0 (0)
RR-Chaos 1179 0 (0) 0(0)
FrRaY-PCT3 1199 194 (135) 3(3)

_ | Frav-pOS 1199 194 (135) 3(3)

£ | Frav-SURW | 1199 199 (137) 3(3)

& | Frav-Random | 1199 196 (137) 3(3)
JPF-Random 0 0 (0) 0 (0)
RR-Chaos 1191 1(1) 0(0)

overhead introduced by Fray resulted in a median slowdown of only 3.2x compared to the original,
in contrast to 31.5X for JPF.

Fray demonstrates superior runtime performance with a median speedup of 10x over JPF and
457 over rr, making it the most efficient among the compared tools for concurrency testing.

5.3 RQ3: Applicability to Real-World Software

We (attempt to) run all tools, including all search strategies of Fray, on every unit test that spawns
more than one thread from the suites of Kafka-streams [16], Lucene [15], and Guava [19]—a total
of 2,664 distinct test cases (each running a 10-minute randomized search over schedules). To the
best of our knowledge, this is the largest evaluation of controlled concurrency testing on real-world
software.

Table 2 shows the results of these experiments. The table is divided into sections representing
each of the target projects: Kafka-Streams, Lucene, and Guava. The column “Tests Run” indicates
the number of tests that a given tool could run at all in a push-button fashion, without crashing
with an internal error. Note that the tests are expected to pass as they have been regularly running
in the projects’ corresponding CI pipelines. The next column counts the subset of test runs in
which the search strategy found a concurrency bug; that is, the test can be shown to fail (by an
assertion violation, run-time exception, or deadlock) due to a race condition. All such failures
can be deterministically reproduced with a fixed schedule. A subset of these failures depends on
the timers used by the tests (most commonly, Object .wait (timeout))—we identify these
explicitly since some of the failures may be highly improbable in practice. Failing tests have to be
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analyzed manually to deduplicate underlying bugs. The last column shows the number of unique
bugs reported to (and confirmed by) the developers.

The results show that Fray excels in both applicability and effectiveness. First, Fray can run
all the real-world software tests in a push-button fashion. Second, even Fray-Random identifies
interleavings that cause failure in 291 tests (vs. only 5 by RR-Chaos). However, both Fray-POS and
Fray-SURW work better, finding failures in 360+ tests each—requiring an average of 190 and 82
iterations respectively to search for them. JPF cannot run any of the 2,664 tests; it always fails with
internal errors due to unimplemented native methods or unsupported JDK features.

We manually deduplicated the bugs identified by the Fray and reported 18 distinct bugs to project
maintainers. For each bug, we have reported detailed instructions for reproduction. Developers
have confirmed 16 bugs at the time of writing (and 12 have been fixed); the rest are awaiting
triaging. Among the 18 bugs we reported, six are caused by atomicity violations, five by order
violations [42], one by unhandled spurious wakeups, five by thread leaks, and the remaining one is
yet unclassified. Note that some of the tests in which we observed bugs were encountered as flaky
failing tests in past issues, but developers had not identified a way to reproduce and determine the
root cause. Fray unlocks the capability to reliably identify and debug such failures.

In the evaluation of controlled concurrency testing on real-world software involving 2,664
distinct test cases, Fray demonstrates superior applicability and effectiveness by successfully
running all real-world tests in a push-button fashion and identifying 360+ test failures using
either POS or SURW, while other approaches either found significantly fewer failures (e.g.,
RR-Chaos found only 5) or failed to run any tests at all (JPF).

5.4 RQ4: Linearizability of Data Structures

Lincheck [33] is a state-of-the-art specialized concurrency testing framework focusing on linearaz-
ibility [23] of concurrency data structures (e.g., Concurrent HashMap), determining whether
a set of concurrent method calls have the same effect as some series of sequential method calls.
For this purpose, Lincheck provides a lightweight interface for declaring data-structure APIs and
automatically converts this spec to a test runner that includes the sequence of API calls and the
test oracle. While the previous RQs evaluated Fray’s capabilities for general-purpose concurrency
testing, we would like to (1) evaluate whether Fray can also be used for testing of concurrent data
structures, and (2) conceptually compare the bug-finding scope of Fray and Lincheck.

We evaluate Fray on the 9 concurrent data structures in which the original Lincheck paper [33]
reports new bugs. For each of these data structures, Lincheck reports the sequence of API calls that
results in the linearizeability bug. To allow Fray, JPF, and rr to also attempt to find these bugs, we
manually translated each of these sequences of API calls into test drivers and added assertions that
the results confirm to that of a linearizable execution.

Using the same 10-minute search as before, Fray-POS finds 8 out of 9 bugs, compared to Fray-PCT3
(7 bugs), Fray-SURW (6 bugs), Fray-Random (6 bugs), JPF-Random (2 bugs), and rr-Chaos (2 bugs).
The only bug Fray-POS misses is a liveness error in Kotlin’s Mut ex: Kotlin implements coroutines
by interleaving multiple logical tasks on the same user-space thread, and context switching at
blocking I/O operations. For Fray, this program appears single-threaded so it cannot explore any
interleavings.

While Fray successfully found interleavings that trigger 8 out of 9 linearizability bugs, it required
manually constructed test drivers to do so. This highlights the complementary nature of these tools:
Lincheck offers a powerful, specialized approach for concurrent data structure testing, whereas
Fray provides robust general-purpose concurrency testing capabilities. Fray’s broader scope enables
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class KafkaStream ({
volatile State state;
boolean close() {
if (state == DONE) { [

1
2

3

4

5 return true;

‘ )
7

8

9

( Initial state: state == RUNNING )

Thread 1 }

)

Thread 2

J

setState (PENDING) ; l m

-
/. State changes to
close:7
setState (DONE) ; PENDING
10 } l’ (e v
11 synchronized void close:9 State changes to
12 setState (State newState) { DONE
5 if (newState - PENDING) (
14 assert (state != DONE) ; l
-
15 state = newState; Assertion checks if
: setState:14
16 } else if (...) {} state != DONE

17}
(b) Execution trace demonstrating the race condition: Thread

() Simplified KafkaSt ream implemen- 1 successfully transitions the state from RUNNING through
tation that throws AssertionError PENDING to DONE, while Thread 2 attempts to set the state
when two threads try to close the stream to PENDING after it is already DONE, triggering the assertion
concurrently. failure in the set State method.

Fig. 8. Race Condition in Kafka Stream Close Operation

it to effectively test complex concurrent applications that create and manage their own threads,
such as Kafka and Lucene, which falls outside Lincheck’s original scope.

Fray is capable of finding interleavings that result in linearizability bugs when provided the test
driver. We believe that Fray and Lincheck serve complementary purposes in the concurrency
testing ecosystem—Fray excels at general-purpose concurrency testing of existing developer-
written tests, while Lincheck specializes in end-to-end testing of concurrent data structures.

6 Case Studies

KAFKA-17379: Figure 8a shows the simplified implementation of KafkaStream and its close
method. The KafkaStream is designed as a state machine and transitions through different
states during its lifecycle. A concurrency bug arises when two threads attempt to close the same
stream. As shown in the Figure 8b, when Thread 1 successfully changes the state from RUNNING to
PENDING and then to DONE, Thread 2 can still attempt to set the state to PENDING. This violates
the assertion in the set State method that checks whether the state is not already DONE when
transitioning to PENDING. The bug manifests as an AssertionError when Thread 2 reaches
this assertion check. This race condition occurs because the c1ose method does not acquire proper
synchronization before checking and modifying the state.

This bug, introduced approximately four years ago, remained hidden until Fray detected it.
Notably, the developers had already implemented tests capable of triggering the bug, but without
any mechanism for controlled concurrency testing the buggy interleaving was never identified. The
bug turned out to be tricky to fix. After our report, the developers iterated on fix strategies for over
a week (over 26 comments and replies in the GitHub issue) and ultimately settled on redesigning
the existing state transition model. Moreover, we were able to help the developers confirm that the
fix did not introduce new concurrency bugs by re-running the patched implementation with Fray.
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1 class Queue ({

2 volatile long maxSeq = 2;
3 volatile long seq = 1;

4 Queue advance (int ops) {
5 maxSeq = seq + 0Ops;

6 }

7 long next () {

8 if (seqg + 1 > maxSeq) {
9 advance () ;

10 }

11 long current = ++seq;
12 assert seq <= maxSeq;
13 return current;

417:23

[ Initial state: seq == 1 ]

([ Thread1 | |

l
next:11 |
|

Thread 2 J

Update seq to 2

14 } l

15} Assertion checks if
seq <= maxSeq

(b) Execution trace showing the race condition between two

threads. The race occurs when both threads try to get a sequence

number from the same queue, leading to an assertion failure when
the sequence number exceeds the maximum allowed value.

(a) Simplified DocumentsWriter—
DeleteQueue implementation that
throws AssertionError when two
threads try to acquire a sequence number
concurrently.

Fig. 9. Race Condition in Lucene Document Writer.

It is worth noting that in our experiments, this bug was only detected (within the 10-minute time
bound) using the POS scheduling algorithm, highlighting that the advances in concurrency testing
algorithms indeed benefit practical bug detection in complex concurrent applications. Despite the
theoretical existence of such algorithms for years, developers lacked practical testing frameworks
to apply them effectively in real-world scenarios.

LUCENE-13571: Figure 9a shows the simplified implementation of Document sWriterDelete~-
Queue, which demonstrates an atomicity violation bug [43] that caused an assertion failure in

Apache Lucene. The bug occurs when multiple threads access the queue concurrently. As shown

in the execution trace, Thread 1 and Thread 2 both attempt to increment sequence numbers, but

without proper synchronization between queue advancement and sequence number generation.
When the queue’s maximum sequence number is set by one thread, another thread may continue

incrementing the sequence counter beyond this maximum, triggering the assertion error.

Although the race condition appears evident in the simplified code, it manifests with considerably
more subtlety in the actual implementation due to complex interactions between queue deletion
and reuse. A flaky test failure was initially documented in February 2024; however, it remained
unresolved as developers encountered significant challenges in reproducing the issue and could
not isolate the root cause. Despite implementing several proposed fixes, the issue persisted. Fray
rediscovered the test failure while running concurrency tests in the Lucene code base and provided
developers with a deterministic execution trace. With the trace, developers successfully identified
the root cause of the failure and implemented an effective fix, resolving an issue that had persisted
for six months since its initial discovery.

After the issue was fixed, we received an email from the developers saing: “With all the hype
around LLMs, etc. it’s refreshing to see practical and cutting edge research in something as useful
and powerful as debugging concurrent programs on the JVM” Subsequently, Elastic Search Labs
also invited us to give a talk about our work and published a blog post [34] about how Fray helped
find the Lucene bug.
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7 Discussion
7.1 Threats to Validity

In our evaluation, one threat to construct validity arises from our porting of SCTBench to Java. We
mitigated this threat by only targeting a subset of SCTBench which was standalone and could be
validated manually. Our threat to internal validity stems mainly from the fact that rr and JPF were
originally designed for different use cases (record-and-replay and model checking respectively); so,
even though they support random testing they might not be engineering to do that optimally. We
mitigate this threat by relying not only on time-to-bug-discovery, but also evaluating search space
(Fig. 6, where JPF is quite comparable to Fray) and applicability (Table 2, where the inability to run
random testing also implies the inability to run JPF’s model checking or rR’s replay debugging). Our
evaluation naturally has a threat of external validity—while we demonstrated Fray’s effectiveness
on a number of benchmarks and real-world targets, we cannot make scientific claims about Fray’s
superiority on every target in general.

7.2 Limitations

As evidenced by our evaluation, Fray can miss bugs in programs with data races, and cannot
interleave single-threaded co-routines. Additionally, Fray’s handling of timed waits and sleep
statements introduces practically improbable schedules. For example, consider a thread that sleeps
for 10 seconds, waiting for a flag to be updated by another thread. According to the JLS [21], “neither
Thread.sleep nor Thread.yield have any synchronization semantics”; thus, a schedule
where the sleep completes before the other thread has made any progress is valid. However, we have
observed some developers being unwilling to fix such issues given their improbability. In future
work, we plan to use statistical methods or allow user configurations to suppress such warnings.

7.3 Insights on “Applicability”

While past work on concurrency testing has focused mainly on optimizing performance and search
strategies, our research highlights the importance of focusing system design on “applicability”,
which hitherto has been overlooked as simply an implementation detail. To find real bugs, you
have to be able to run a tool on real software, and minimize developer effort to manually adapt
their software for the testing tool. To do this, the tools have to be able to support arbitrary program
features. Even supporting say 90% of language features does not mean that you can test 90% of
real-world targets; the inability of JPF to run on most targets in our study (ref. Table 2) is evidence
of this—any mishandled feature can cause the application or JVM to crash and the test to be
meaningless.

We observed that the limits to applicability inherent in tools like JPF and JMVx stem from the
need to support various interactions between applications and the JVM through shared concurrency
primitives (ref. Section 3). Due to the complex web of inter-dependencies between Java features
such as object monitors, wait/notify, thread creation/termination, atomics, unsafe, etc. the decision
to replace any concurrency primitive opens up a Pandora’s box of special cases to handle, inevitably
leaving loose ends in the limit.

In contrast, Fray only requires identifying a set of core concurrency primitives (defined in the
language manual [21]) to wrap around with shadow locks. By not having to re-implement any
concurrency primitives, the application can fully inter-operate with the JVM, whose code we do
not need to control. Our evaluation shows that Fray can therefore be applied to real-world software
in a push-button fashion.
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7.4 Reflection on Applying a State-of-the-Art Search Algorithm to Real-World Targets

Our original implementation of Fray supported random walk, PCT, and POS as scheduling strategies.
When we encountered the SURW paper [76], which was recently presented at ASPLOS’25, we were
happy to find that implementing the algorithm in Fray was relatively straightforward, requiring
only 8 human hours and ~200 lines of code. To validate our implementation of SURW, we manually
translated the examples illustrated in the original paper+artifact and compared the standard
deviation of schedules sampled by both implementations, confirming their similarity. Following the
original authors’ suggestion, we randomly sampled a fixed set memory locations (20) and marked
all their access events as interesting. However, this approach proved insufficient for detecting bugs
like KAFKA-17379 discussed in Section 6. Real-world concurrency tests involve numerous memory
events—the KAFKA-17379 test contained 91 distinct shared memory locations accessed by multiple
threads across 2782 different program locations, with only a few related to the failure. Random
sampling likely misses these critical memory locations, causing SURW to miss bugs. When we
manually marked the relevant state as interesting, SURW successfully identified the failure. This
confirms that identifying interesting events is crucial for SURW’s bug-finding effectiveness and
highlights the need for automated methods to identify these events as future research directions [76].

8 Conclusion

This paper observes that practical concurrency testing of JVM targets requires a careful evaluation
of design choices to maximize both the scope of target applications and the effectiveness of finding
bugs, quickly. We presented Fray, a new platform for concurrency testing of data-race-free JVM
programs. Fray introduces shadow locking, a concurrency control mechanism that orchestrates
thread interleavings without replacing existing concurrency primitives, while still encoding their
semantics to faithfully express the set of all possible program behaviors. Fray identifies a sweet
spot in our design trade-off space. Our empirical evaluation demonstrated that Fray is effective
at general-purpose concurrency testing, and can find real concurrency bugs in mature software
projects. Fray serves as a bridge between concurrency research and software engineering practice—
allowing researchers to evaluate algorithms on industrial codebases while giving developers access
to state-of-the-art testing techniques.
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