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Background

Heap Reference Analysis [Khedker, Sanyal & Karkare, 2007]

X root
S1: x = root
S2: while (x.val > M):
S3: x = x.1
S4: x = x.r
S5: print x.val /.\
S6: EXIT

[8] 8] [10] [11] [12]

The binary tree in the heap at 5.
Access graph for x at ;. Filled nodes are live objects.
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Key Issues

Three main issues in performing Heap Reference Analysis:
@ How to perform a precise alias analysis for arbitrary access paths in
the heap?
@ How to implement whole-program heap reference analysis in an
inter-procedural manner?

© How to use the resulting access graphs to improve garbage
collection?
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© Heap Alias Analysis
@ Need for Alias Analysis
o Existing Abstractions
@ Proposed Abstraction: Acccessor Relationship Graph
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Need for Alias Analysis

@ x and y do not alias at ;.
o LVIN,

D DD

o LVOUT,

W)~ po)~()

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 6 /32



Need for Alias Analysis

@ x may alias y at 54
o LVIN,
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Need for Alias Analysis

@ x must alias y at S
o LVIN,
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Need for Alias Analysis

@ May-alias analysis is required for sound heap liveness analysis.
@ Must-alias analysis is desirable for performing strong updates.
@ In general, alias queries may not be as straightforward as the

preceeding examples:

w.r =2z

In the above program, z is live if w may be aliased to any object
accessible by the pattern x(.p)*.q.

@ The key obervation is here is that we need to determine aliases
between live access patterns.
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Access Graphs and Access Patterns

@ Access Graph

o - D@ ®

Z

52: while (...): @ Equivalent Automaton

S3: X = X.p p

S4: x = x.q

S50 x - xr L%&/LVQ :
S6: use x q Q
S7: EXIT

@ Access Patterns
o x/ps: x.p(.p)*
o x/qs: x(.p)*.q
o x/rs : x(.p)*.q.r

Consider liveness at S,.
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Approaches to Heap Alias Analysis

Modelling an unbounded number of objects using a finite abstraction:
@ Muchnick & Jones, 1981: k-limited graph
@ Chase, Wegman & Zadeck, 1990: Merge on allocation sites
@ Sagiv, Reps & Wilhelm, 1996: “Materialization”
@ Sagiv, Reps & Wilhelm, 1999: 3-valued logic
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Approaches to Heap Alias Analysis

Modelling an unbounded number of objects using a finite abstraction:
@ Muchnick & Jones, 1981: k-limited graph
@ Chase, Wegman & Zadeck, 1990: Merge on allocation sites
@ Sagiv, Reps & Wilhelm, 1996: “Materialization”
@ Sagiv, Reps & Wilhelm, 1999: 3-valued logic

@ Our approach: Use access patterns from liveness graphs to
improve expressibility of points-to graph
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Proposed Approach
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Proposed Approach

S0 Actual heap layout after Sg

s [7=rew
s
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Proposed Approach

S0 Actual heap layout after Sg
s

Ly: Liveness after P,

LVINg = LVOUT7 = LVOUTs:

LVIN; (considering a =’ x):
LVINg (considering b ™= x):
Po: Initial Points-to Analysis @ 5 ®_’ 5 @
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Proposed Approach

Ly: Liveness after P,
LVINg = LVOUT7 = LVOUTg:

a ™= x):

LVIN; (considering
o - o

/SRR

We are not performing “materialization”.

@ P; does not use Py and L, does not use L.

@ These are new passes from scratch! @
o L; uses P;_1 for implicit updates. [
@ P; uses L; for expressibility.

\ / P;: Points-to Analysis using L; LT//N7 (considering a (I x):
s, PTOU;'6 — PTIN; = PTINg:
a \ LVINg (considering b # x):
S0 x—{S} S5k 0
xa  x/nb - LVOUTs = LVIN; U LVINg:
y—{%&] z—{5] OnONO
y z
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Proposed Approach

o Key idea: distinguish between objects accessible by distinct sets of
access patterns.
@ Thus, our approach is more precise than naive summarization in that:

© Unnecessary may-aliases are avoided.
© Useful must-aliases are discovered.

@ Inter-dependence of liveness and points-to analysis:
@ Perform naive points-to (summarize on alloc sites).
@ Backward analysis to get huge liveness info (sound but imprecise).
© Again do points-to, distinguishing on access patterns found above.
© Another round of backward analysis to get precise liveness info.
© Fixed point...?
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Accessor Relationship Graph

Symbol | Definition Cardinality

%4 Variables Proportional to program size
M Memory allocation sites | Proportional to program size
R Field dereference points | Proportional to program size
A Access graph nodes V| +|V| x|R|

H Heap graph nodes |M| x 21Al
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Accessor Relationship Graph

Symbol | Definition Cardinality

%4 Variables Proportional to program size
M Memory allocation sites | Proportional to program size
R Field dereference points | Proportional to program size
A Access graph nodes V| +|V]| x|R|

H Heap graph nodes |M| x 21Al

Definition

Accessor Relationship Graph is a 3-tuple (E,, Ef, summary), where:
e E,CVxXxH
e ErCHXFxH

e summary : H — {true, false}
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Lattice Representation

Definition

(Ev, Er,summary) 3 (E}, Ef, summary’) if:
e E,CE],
o Er CEf
e Vk € H: summary(k) = summary’(k)
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Lattice Representation

(Ev, Er,summary) 3 (E}, Ef, summary’) if:
e E,CE],
o Er CEf
e Vk € H: summary(k) = summary’(k)

Definition
(Ev, Ef, summary) 1 (E[,, Ef, summary’) = (E]/, E{', summary”) such that:
e E/ =E,UE]
o E/ = EfUE]

e Vk € H: summary” (k) = summary (k) V summary’(k)
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Data Flow Analysis

e Normalization: ©(X, L) = Consistency + Reachability

@@ . --

x/ns  x/ng  x/ng

"

x/ng x/ng

X
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Data Flow Analysis

e Normalization: ©(X, L) = Consistency + Reachability

@@ . --

x/ns  x/ng  x/ng

"

x/ng x/ng

X

@ Data Flow Equations:

PTINy = 1 ©(PTOUT,, LVIN,)
pEpred(b)

PTOUT, = O(f,(PTIN), LVOUT,)
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System Model

o [:S x AP — {true, false} (Results of liveness analysis)
o P:S x AP x AP — {true, false} (Results of points-to analysis)
o HLA: P > 1 (Heap Liveness Analysis)
e PTA:L - P (Heap Points-To Analysis)

Rohan Padhye (IIT Bombay)
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Vi>0: 141 = HLA(P)
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System Model

o [:S x AP — {true, false} (Results of liveness analysis)
o P:S x AP x AP — {true, false} (Results of points-to analysis)
o HLA: P > 1 (Heap Liveness Analysis)
e PTA:L - P (Heap Points-To Analysis)

Lo = As\a.false
Vi>0: P _PTA(Z)
LA(F

Vi>0:Li= )
o I;C Zj iff Vs € S,Va e AP : Li(s,a) = Zj(s, a)
o P C P;iffYs € S,Yac AP,Yb € AP : Pi(s,a,b) = Pj(s, a, b)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 17 / 32



Precision of Liveness

LoPoly Pl PolsPsly---
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Precision of Liveness

LoPoli PLly PolsPyly--

The results of the second round of heap liveness analysis is the most
precise result which is also sound. That is, Vk > 0: Ly C L.
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Precision of Liveness

LoPoly Pl PolsPsly---

The results of the second round of heap liveness analysis is the most
precise result which is also sound. That is, Vk > 0: Ly C L.

Proof.

Vk>0:1o C Ly (By Definition)
Vk>0: Py D Py (Lemma 1)
Vk > 0: Zl D) Zk+1 (Lemma 2)
Vk>0:P, C Py (Lemma 1)
Vk>0:1C Lo (Lemma 2)
Vk>0:1, C L, (Step3and5)

O

4

o Gl o> W =
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Outline

© Interprocedural Analysis
@ Existing Frameworks
@ Our Framework: Value Contexts
@ The Role of Call Graphs
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Interprocedural Analysis

@ No existing implementation of inter-procedural heap reference analysis
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@ No existing implementation of inter-procedural heap reference analysis
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Interprocedural Analysis

@ No existing implementation of inter-procedural heap reference analysis

@ Soot has excellent API for data flow analysis - only intraprocedural
o IFDS/IDE solver [Bodden, SOAP 2012]
F({xy,2}) = F() T F({yh) nf({z})

o Functions on 2P reduced to functions on D
o Modelled as a graph reachability problem
e Main limitation: Requires distributive flow functions
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Interprocedural Analysis

@ No existing implementation of inter-procedural heap reference analysis

@ Soot has excellent API for data flow analysis - only intraprocedural
o IFDS/IDE solver [Bodden, SOAP 2012]
o f({x,y,2}) = f({x}) M f({y}H) M f({z})

Functions on 2P reduced to functions on D
Modelled as a graph reachability problem

Main limitation: Requires distributive flow functions
Not suitable for many types of heap analysis
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Interprocedural Analysis

The most general and precise solutions:
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Interprocedural Analysis

The most general and precise solutions:
o Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]

e Functional (flow functions for call statements) [Sharir & Pnueli, 1981]
e Function composition method
e Tabulation method

@ Modified call-strings method
o Value-based termination of call string construction

[Khedker & Karkare, 2008]
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Interprocedural Analysis

The most general and precise solutions:
o Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]
e Functional (flow functions for call statements) [Sharir & Pnueli, 1981]

e Function composition method
e Tabulation method

e Modified call-strings method [Khedker & Karkare, 2008]
o Value-based termination of call string construction
o Value contexts [Padhye & Khedker, 2013]
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Interprocedural Analysis

The most general and precise solutions:
o Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]
e Functional (flow functions for call statements) [Sharir & Pnueli, 1981]

e Function composition method
e Tabulation method

e Modified call-strings method [Khedker & Karkare, 2008]
o Value-based termination of call string construction

o Value contexts [Padhye & Khedker, 2013]
o Reformulation of tabulation method

e Suitable for bi-directional interleaved analyses
o Can map arbitrary call string to value context (dynamic optimizations)
o Context-sensitive data flow solution (specialization)
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Value Contexts

Value contexts:
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Value Contexts

Value contexts:
e X = (method, entryValue)
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Value Contexts

Value contexts:
e X = (method, entryValue)
o exitValue(X)
@ Data Flow Analysis is performed using traditional work-list method

o Work-list contains (context, node) pairs
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Value Contexts

Value contexts:
e X = (method, entryValue)
exitValue(X)
Data Flow Analysis is performed using traditional work-list method

Work-list contains (context, node) pairs
Call-sites: Find value context X = (method, entryValue)
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Value Contexts

Value contexts:
e X = (method, entryValue)
exitValue(X)
Data Flow Analysis is performed using traditional work-list method
Work-list contains (context, node) pairs

Call-sites: Find value context X = (method, entryValue)

e Found: Re-use exitValue(X)
o Not found: Create new X and add all nodes to work-list
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Value Contexts

Value contexts:
e X = (method, entryValue)
o exitValue(X)
@ Data Flow Analysis is performed using traditional work-list method
o Work-list contains (context, node) pairs

o Call-sites: Find value context X = (method, entryValue)
e Found: Re-use exitValue(X)
o Not found: Create new X and add all nodes to work-list
o Record transition from this call-site to X

o Exit-sites: Set exitValue(X) and add callers to work-list
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Example - Sign Analysis
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Implementation Framework

InterPr ysis<M,N,A Context<M,N,A>
+ topValue() : A + getMethod(): M
+ boundaryValue(M) : A + getEntryValue() : A
+ copy(A) : A + getExitValue() : A
+ meet(AA) : A + getValueBefore(N) : A
+ normalFlowFunction(Context<M,N,A>, N, A) : A + getValueAfter(N) : A
+ callEntryFlowFunction(Context<M,N,A>, M, N, A) : A

+ callExitFlowFunction(Context<M,N,A>, M, N, A) : A
+ callLocalFlowFunction(Context<M,N,A>, N, A) : A
+ programRepreser 10) : ProgramRepr 1<MN> ProgramRepresentation<M,N>
+ doAnalysis() : void

+ getContexts() : Map<M,List<Context<M,N,A>>>

+ getMeetOverPathsSolution() : DataFlowSolution<M,N,A> + getEntryPoints() : List<M>
+ getControlFlowGraph(M) : DirectedGraph<N>
+ isCall(N) : boolean
+ resolveTargets(M, N) : List<M>
ForwardinterProceduralAnalysis<M,N,A> BackwardinterProceduralAnalysis<M,N,A>
+ doAnalysis() : void + doAnalysis() : void

https://github.com/rohanpadhye/vasco
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The Role of Call Graphs

o Context-sensitivity only useful if call graph is precise

@ OOP: Use points-to analysis to resolve virtual calls

@ Imprecise points-to analysis = “spurious” edges

@ SPARK: Thousands of spurious edges even for small programs
e e.g. Over 250 targets for x.hashCode() in HashSet

o Affects efficiency and precision of interprocedural analysis

@ Points-to Analysis using Value Contexts

o Flow and context-sensitive points-to analysis (FCPA)
o Context-sensitive call graph constructed on-the-fly
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Results of Points-To Analysis

@ Tested on 7 benchmarks from SPEC JVM98 and DaCapo 2006
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Results of Points-To Analysis

@ Tested on 7 benchmarks from SPEC JVM98 and DaCapo 2006
e Time to analyze: 1.15 sec (compress) to 697.4 sec (antlr)

o Average contexts per method: 4.24 (mpegaudio) to 25.04 (jess)
@ Number of interprocedural paths in resulting call graph (for k = 10):

e Over 96% less paths in FCPA over SPARK for 3 benchmarks
o 62-92% less paths in FCPA over SPARK for remaining benchmarks
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Outline

@ Access Graphs for Garbage Collection
o Existing ldeas
@ Novel Technique: Dynamic Heap Pruning
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How to use access graphs for improving garbage collection?
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e Cannot nullify access paths that are not provably safe to dereference.
o The safety analyses themselves depend on alias information.

@ Increase in code size and possible performance penalty.

e Redundant nullification of same reference from aliased access paths.

© Augment garbage collector to traverse access graphs.

No need of safety analysis.

o Perfect alias information available at run-time.

e Difficult to map named variables and fields to run-time offsets.

e Optimizations after HRA (static or JIT) invalidate access graphs.

© Dynamic heap pruning - a hybrid approach.
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© Pause a running program when pruning has to be performed.

@ For each frame on the call stack do:

@ Find the paused program point P using return address of next frame
(or PC for top-of-stack).

@ Construct the call string o using the sequence of return addresses from
the bottom-of-stack.

© Determine the value context X by traversing ¢ in the context
transition graph.

@ Retrieve the access graphs for point P in context X.

© Traverse the access graphs from the root variables (stack locals) and
label heap objects with the set of accessor nodes that reach them.

© For each labelled object in the heap do:

@ Find the set of live fields by looking at the edges out of every accessor
that reaches it.
@® Set the value of all other fields (which are dead) to null.

© Resume the program. Let garbage collection run as normal.
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Outline

© Summary & Future Work
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The following were the main contributions of this project:
@ A liveness-driven heap abstraction for precise alias analysis.
@ A generic access graph library implemented in Java.

© A generic inter-procedural data flow analysis framework implemented
in Java.

@ A flow- and context-sensitive points-to analysis implemented in Soot
that constructs precise call graphs.

O A technique for performing dynamic heap pruning implemented using
the Java Debug Interface (JDI).
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© Implementation of an inter-procedural liveness-driven heap points-to
analysis.
@ Performance analysis of dynamic heap pruning on real benchmarks.

© Shape analysis using accessor relationship graphs.
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