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Background

Heap Reference Analysis [Khedker, Sanyal & Karkare, 2007]

S1: x = root

S2: while (x.val > M):

S3: x = x.l

S4: x = x.r

S5: print x.val

S6: EXIT

x l3 r4

Access graph for x at S2.
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The binary tree in the heap at S2.
Filled nodes are live objects.
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Key Issues

Three main issues in performing Heap Reference Analysis:

1 How to perform a precise alias analysis for arbitrary access paths in
the heap?

2 How to implement whole-program heap reference analysis in an
inter-procedural manner?

3 How to use the resulting access graphs to improve garbage
collection?
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Need for Alias Analysis

S1

S2 S3

x .p = zS4

u = y .pS5

v = u.qS6

use vS7

x and y do not alias at S4.

LVIN4

x

y p5 q6

LVOUT4
y p5 q6
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Need for Alias Analysis

S1

x = yS2 S3

x .p = zS4

u = y .pS5

v = u.qS6

use vS7

x may alias y at S4

LVIN4

x

y p5 q6

z q6

LVOUT4
y p5 q6
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Need for Alias Analysis

x = yS1

S2 S3

x .p = zS4

u = y .pS5

v = u.qS6

use vS7

x must alias y at S4

LVIN4

x

y

z q6

LVOUT4
y p5 q6
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Need for Alias Analysis

May-alias analysis is required for sound heap liveness analysis.

Must-alias analysis is desirable for performing strong updates.

In general, alias queries may not be as straightforward as the
preceeding examples:

w .r = z

x p3 q4 r5

In the above program, z is live if w may be aliased to any object
accessible by the pattern x(.p)∗.q.

The key obervation is here is that we need to determine aliases
between live access patterns.
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Access Graphs and Access Patterns

S1: w.r = z

S2: while (...):

S3: x = x.p

S4: x = x.q

S5: x = x.r

S6: use x

S7: EXIT

Consider liveness at S2.

Access Graph

x p3 q4 r5

Equivalent Automaton

x p q r

p

q

Access Patterns

x/p3 : x .p(.p)∗
x/q4 : x(.p)∗.q
x/r5 : x(.p)∗.q.r
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Approaches to Heap Alias Analysis

Modelling an unbounded number of objects using a finite abstraction:

Muchnick & Jones, 1981: k-limited graph

Chase, Wegman & Zadeck, 1990: Merge on allocation sites

Sagiv, Reps & Wilhelm, 1996: “Materialization”

Sagiv, Reps & Wilhelm, 1999: 3-valued logic

Our approach: Use access patterns from liveness graphs to
improve expressibility of points-to graph
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Proposed Approach

y = newS0

z = newS1

t = newS2

t.n = xS3

x = tS4

a = xS5

b = a.nS6

a.n = yS7 b.n = zS8

use x .nS9

exitS10

Actual heap layout after S6

x · · ·n n n n

a b

y z

P0: Initial Points-to Analysis

PTOUT6 = PTIN7 = PTIN8:

x S2 n

a b

y S0 z S1

P1: Points-to Analysis using L1
PTOUT6 = PTIN7 = PTIN8:

x S2 S2 S2
x , a x/n9, b −

n n
n

a b

y S0
y

z S1
z

L1: Liveness after P0

LVIN9 = LVOUT7 = LVOUT8:
x n9

LVIN7 (considering a
may
= x):

a x n9 y, ,

LVIN8 (considering b
may
= x):

b x n9 z, ,

LVOUT6 = LVIN7 ∪ LVIN8:
a b x n9 y, , , z,

L2: Liveness after P1

LVIN9 = LVOUT7 = LVOUT8:
x n9

LVIN7 (considering a
must
= x):

x y,

LVIN8 (considering b 6= x):

x n9

LVOUT6 = LVIN7 ∪ LVIN8:
x n9 y,
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Note

We are not performing “materialization”.
P1 does not use P0 and L2 does not use L1.
These are new passes from scratch!
Li uses Pi−1 for implicit updates.
Pi uses Li for expressibility.
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Proposed Approach

Key idea: distinguish between objects accessible by distinct sets of
access patterns.

Thus, our approach is more precise than naive summarization in that:
1 Unnecessary may-aliases are avoided.
2 Useful must-aliases are discovered.

Inter-dependence of liveness and points-to analysis:
1 Perform naive points-to (summarize on alloc sites).
2 Backward analysis to get huge liveness info (sound but imprecise).
3 Again do points-to, distinguishing on access patterns found above.
4 Another round of backward analysis to get precise liveness info.
5 Fixed point...?
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Accessor Relationship Graph

Symbol Definition Cardinality

V Variables Proportional to program size
M Memory allocation sites Proportional to program size
R Field dereference points Proportional to program size
A Access graph nodes |V |+ |V | × |R|
H Heap graph nodes |M| × 2|A|

Definition

Accessor Relationship Graph is a 3-tuple 〈Ev ,Ef , summary〉, where:

Ev ⊆ V × H

Ef ⊆ H × F × H

summary : H → {true, false}
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Lattice Representation

Definition

〈Ev ,Ef , summary〉 w 〈E ′v ,E ′f , summary ′〉 if:

Ev ⊆ E ′v

Ef ⊆ E ′f
∀k ∈ H : summary(k)⇒ summary ′(k)

Definition

〈Ev ,Ef , summary〉 u 〈E ′v ,E ′f , summary ′〉 = 〈E ′′v ,E ′′f , summary ′′〉 such that:

E ′′v = Ev ∪ E ′v

E ′′f = Ef ∪ E ′f
∀k ∈ H : summary ′′(k) = summary(k) ∨ summary ′(k)
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Data Flow Analysis

Normalization: Θ(X , L) = Consistency + Reachability

x = x .nS5

n8n6n5x x S1 S1 S1 S1
n n n

n

x x/n5 x/n6 x/n8

n8n6x x S1 S1 S1 S1
n n n

n

x x/n5
x

x/n6 x/n8

Data Flow Equations:

PTINb = u
p∈pred(b)

Θ(PTOUTp, LVINb)

PTOUTb = Θ(fb(PTINb), LVOUTb)
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System Model

L̂ : S × AP → {true, false} (Results of liveness analysis)

P̂ : S × AP × AP → {true, false} (Results of points-to analysis)

HLA : P̂ → L̂ (Heap Liveness Analysis)

PTA : L̂→ P̂ (Heap Points-To Analysis)

L̂0 = λsλa.false

∀i ≥ 0 : P̂i = PTA(L̂i )

∀i ≥ 0 : L̂i+1 = HLA(P̂i )

L̂i ⊆ L̂j iff ∀s ∈ S ,∀a ∈ AP : L̂i (s, a)⇒ L̂j(s, a)

P̂i ⊆ P̂j iff ∀s ∈ S ,∀a ∈ AP,∀b ∈ AP : P̂i (s, a, b)⇒ P̂j(s, a, b)
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Precision of Liveness

L̂0 P̂0 L̂1 P̂1 L̂2 P̂2 L̂3 P̂3 L̂4 · · ·

Theorem

The results of the second round of heap liveness analysis is the most
precise result which is also sound. That is, ∀k > 0 : L̂2 ⊆ L̂k .

Lemma (1)

∀i , j : L̂i ⊆ L̂j ⇒ P̂i ⊇ P̂j

Lemma (2)

∀i , j : P̂i ⊆ P̂j ⇒ L̂i+1 ⊆ L̂j+1

Proof.

1. ∀k ≥ 0 : L̂0 ⊆ L̂k (By Definition)
2. ∀k ≥ 0 : P̂0 ⊇ P̂k (Lemma 1)
3. ∀k ≥ 0 : L̂1 ⊇ L̂k+1 (Lemma 2)
4. ∀k ≥ 0 : P̂1 ⊆ P̂k+1 (Lemma 1)
5. ∀k ≥ 0 : L̂2 ⊆ L̂k+2 (Lemma 2)
6. ∀k > 0 : L̂2 ⊆ L̂k (Step 3 and 5)
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Interprocedural Analysis

No existing implementation of inter-procedural heap reference analysis

Soot has excellent API for data flow analysis - only intraprocedural

IFDS/IDE solver [Bodden, SOAP 2012]

f ({x , y , z}) = f ({x}) u f ({y}) u f ({z})
Functions on 2D reduced to functions on D
Modelled as a graph reachability problem
Main limitation: Requires distributive flow functions
Not suitable for many types of heap analysis

x = y .n

y o1 o2
n

y o1 o2
n

x
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Interprocedural Analysis

The most general and precise solutions:

Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]

Functional (flow functions for call statements) [Sharir & Pnueli, 1981]

Function composition method
Tabulation method

Modified call-strings method [Khedker & Karkare, 2008]

Value-based termination of call string construction

Value contexts [Padhye & Khedker, 2013]

Reformulation of tabulation method
Suitable for bi-directional interleaved analyses
Can map arbitrary call string to value context (dynamic optimizations)
Context-sensitive data flow solution (specialization)
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Value Contexts

Value contexts:

X = 〈method , entryValue〉
exitValue(X )

Data Flow Analysis is performed using traditional work-list method

Work-list contains 〈context, node〉 pairs

Call-sites: Find value context X = 〈method , entryValue〉

Found: Re-use exitValue(X )
Not found: Create new X and add all nodes to work-list
Record transition from this call-site to X

Exit-sites: Set exitValue(X ) and add callers to work-list
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Example - Sign Analysis

main()

p = 5n1

q = f(p, -3)c1

r = g(-q)c4

exitn6

f(a, b)

if (...)n2

c = a * bn3 c = g(10)c2

return cn5

g(u)

v = f(-u, u)c3

return vn6

〈X0,>〉

〈X0, p+〉

〈X0, p+q−〉

〈X0, p+q−r−〉

〈X1, a+b−〉

〈X3, a−b+〉 〈X1, a+b−〉

〈X3, a−b+c−〉

〈X3, a−b+c−〉

〈X2, u+〉

〈X2, u+v−〉

Context Proc. Entry Exit

X0 main >
X1 f a+b−

X2 g u+

X3 f a−b+

Value Contexts

X0 X1 X2 X3

c1 c2 c3

c2c4

Context Transitions

>

− 0 +

⊥
Component

Lattice
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Implementation Framework

Context<M,N,A>

+ getMethod(): M
+ getEntryValue() : A
+ getExitValue() : A
+ getValueBefore(N) : A
+ getValueAfter(N) : A

InterProceduralAnalysis<M,N,A>

+ topValue() : A
+ boundaryValue(M) : A
+ copy(A) : A
+ meet(A,A) : A
+ normalFlowFunction(Context<M,N,A>, N, A) : A
+ callEntryFlowFunction(Context<M,N,A>, M, N, A) : A
+ callExitFlowFunction(Context<M,N,A>, M, N, A) : A
+ callLocalFlowFunction(Context<M,N,A>, N, A) : A
+ programRepresentation() : ProgramRepresentation<M,N>
+ doAnalysis() : void
+ getContexts() : Map<M,List<Context<M,N,A>>>
+ getMeetOverPathsSolution() : DataFlowSolution<M,N,A>

ForwardInterProceduralAnalysis<M,N,A>

+ doAnalysis() : void

BackwardInterProceduralAnalysis<M,N,A>

+ doAnalysis() : void

ProgramRepresentation<M,N>

+ getEntryPoints() : List<M>
+ getControlFlowGraph(M) : DirectedGraph<N>
+ isCall(N) : boolean
+ resolveTargets(M, N) : List<M>

https://github.com/rohanpadhye/vasco
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The Role of Call Graphs

Context-sensitivity only useful if call graph is precise

OOP: Use points-to analysis to resolve virtual calls

Imprecise points-to analysis ⇒ “spurious” edges

SPARK: Thousands of spurious edges even for small programs

e.g. Over 250 targets for x.hashCode() in HashSet

Affects efficiency and precision of interprocedural analysis

Points-to Analysis using Value Contexts

Flow and context-sensitive points-to analysis (FCPA)
Context-sensitive call graph constructed on-the-fly
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Results of Points-To Analysis

Tested on 7 benchmarks from SPEC JVM98 and DaCapo 2006

Time to analyze: 1.15 sec (compress) to 697.4 sec (antlr)

Average contexts per method: 4.24 (mpegaudio) to 25.04 (jess)

Number of interprocedural paths in resulting call graph (for k = 10):

Over 96% less paths in FCPA over SPARK for 3 benchmarks
62-92% less paths in FCPA over SPARK for remaining benchmarks
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Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?

1 Assign null to dead access paths.

Requires availability and anticipability analysis to prevent exceptions.
Cannot nullify access paths that are not provably safe to dereference.
The safety analyses themselves depend on alias information.
Increase in code size and possible performance penalty.
Redundant nullification of same reference from aliased access paths.

2 Augment garbage collector to traverse access graphs.

No need of safety analysis.
Perfect alias information available at run-time.
Difficult to map named variables and fields to run-time offsets.
Optimizations after HRA (static or JIT) invalidate access graphs.

3 Dynamic heap pruning - a hybrid approach.
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Dynamic Heap Pruning

Manipulate the heap using a debugger!

1 Pause a running program when pruning has to be performed.
2 For each frame on the call stack do:

1 Find the paused program point P using return address of next frame
(or PC for top-of-stack).

2 Construct the call string σ using the sequence of return addresses from
the bottom-of-stack.

3 Determine the value context X by traversing σ in the context
transition graph.

4 Retrieve the access graphs for point P in context X .
5 Traverse the access graphs from the root variables (stack locals) and

label heap objects with the set of accessor nodes that reach them.

3 For each labelled object in the heap do:

1 Find the set of live fields by looking at the edges out of every accessor
that reaches it.

2 Set the value of all other fields (which are dead) to null.

4 Resume the program. Let garbage collection run as normal.
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Summary

The following were the main contributions of this project:

1 A liveness-driven heap abstraction for precise alias analysis.

2 A generic access graph library implemented in Java.

3 A generic inter-procedural data flow analysis framework implemented
in Java.

4 A flow- and context-sensitive points-to analysis implemented in Soot
that constructs precise call graphs.

5 A technique for performing dynamic heap pruning implemented using
the Java Debug Interface (JDI).
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Future Work

1 Implementation of an inter-procedural liveness-driven heap points-to
analysis.

2 Performance analysis of dynamic heap pruning on real benchmarks.

3 Shape analysis using accessor relationship graphs.
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