Interprocedural Heap Analysis using Access Graphs and

Value Contexts

with applications to liveness-based garbage collection

Rohan Padhye
under the guidance of

Prof. Uday Khedker

Department of Computer Science & Engineering
Indian Institute of Technology Bombay

M.Tech Project

Outline

@ Background and Motivation
@ Heap Reference Analysis
o Key Issues

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 2/32

Background

Heap Reference Analysis [Khedker, Sanyal & Karkare, 2007]

X root
S1: x = root
S2: while (x.val > M):
S3: x = x.1
S4: x = x.r
S5: print x.val /.\
S6: EXIT

[8] 8] [10] [11] [12]

The binary tree in the heap at 5.
Access graph for x at ;. Filled nodes are live objects.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 3/32

Key Issues

Three main issues in performing Heap Reference Analysis:
@ How to perform a precise alias analysis for arbitrary access paths in
the heap?
@ How to implement whole-program heap reference analysis in an
inter-procedural manner?

© How to use the resulting access graphs to improve garbage
collection?

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 4 /32

© Heap Alias Analysis
@ Need for Alias Analysis
o Existing Abstractions
@ Proposed Abstraction: Acccessor Relationship Graph

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 5/ 32

Need for Alias Analysis

@ x and y do not alias at ;.
o LVIN,

D DD

o LVOUT,

W)~ po)~()

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 6 /32

Need for Alias Analysis

@ x may alias y at 54
o LVIN,

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 7/32

Need for Alias Analysis

@ x must alias y at S
o LVIN,

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 8 /32

Need for Alias Analysis

@ May-alias analysis is required for sound heap liveness analysis.
@ Must-alias analysis is desirable for performing strong updates.
@ In general, alias queries may not be as straightforward as the

preceeding examples:

w.r =2z

In the above program, z is live if w may be aliased to any object
accessible by the pattern x(.p)*.q.

@ The key obervation is here is that we need to determine aliases
between live access patterns.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 9 /32

Access Graphs and Access Patterns

@ Access Graph

o - D@ ®

Z

52: while (...): @ Equivalent Automaton

S3: X = X.p p

S4: x = x.q

S50 x - xr L%&/LVQ :
S6: use x q Q
S7: EXIT

@ Access Patterns
o x/ps: x.p(.p)*
o x/qs: x(.p)*.q
o x/rs : x(.p)*.q.r

Consider liveness at S,.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 10 / 32

Approaches to Heap Alias Analysis

Modelling an unbounded number of objects using a finite abstraction:
@ Muchnick & Jones, 1981: k-limited graph
@ Chase, Wegman & Zadeck, 1990: Merge on allocation sites
@ Sagiv, Reps & Wilhelm, 1996: “Materialization”
@ Sagiv, Reps & Wilhelm, 1999: 3-valued logic

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 11 / 32

Approaches to Heap Alias Analysis

Modelling an unbounded number of objects using a finite abstraction:
@ Muchnick & Jones, 1981: k-limited graph
@ Chase, Wegman & Zadeck, 1990: Merge on allocation sites
@ Sagiv, Reps & Wilhelm, 1996: “Materialization”
@ Sagiv, Reps & Wilhelm, 1999: 3-valued logic

@ Our approach: Use access patterns from liveness graphs to
improve expressibility of points-to graph

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 11 / 32

Proposed Approach

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP

Proposed Approach

S0 Actual heap layout after Sg

s [7=rew
s

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 12 / 32

Proposed Approach

Actual heap layout after Sg
3 b

\ ? n n n
x— H H H =
y—{] =]

Po: Initial Points-to Analysis

PTOUTs = PTIN7 = PTINg:
a

b
-

Se |b=a.n y*» z—»

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP

Proposed Approach

S0 Actual heap layout after Sg
s

Ly: Liveness after P,

LVINg = LVOUT7 = LVOUTs:

LVIN; (considering a =’ x):
LVINg (considering b ™= x):
Po: Initial Points-to Analysis @ 5 ®_’ 5 @
PTOUTs = PTIN7; = PTINg: LVOUTs = LVIN; U LVINg:

2 OaCOHONO,

Sela=
skoed 5 o]

57‘3'”:,‘" SS‘b.n:z‘
sl
S0 (ot

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 12 / 32

Proposed Approach

Rohan Padhye (IIT Bombay)

Actual heap layout after Sg

Po: Initial Points-to Analysis

PTOUTs = PTIN7 = PTINg:
a

b
e
G]

P;: Points-to Analysis using L;
PTOUTs = PTIN; = PTINg:
a b

N
o R

X, a x/ng,b —
y—5]
y z

Interprocedural Heap Analysis

Ly: Liveness after P,

LVINg = LVOUT7 = LVOUTs:

LVIN; (considering a =’ x):

ONOMONO)
LVINg (considering b ™= x):
ONORONO)

LVOUTg = LVIN; U LVINg;:

@, ®

®.@

Proposed Approach

Rohan Padhye (IIT Bombay)

Actual heap layout after Sg

Po: Initial Points-to Analysis

PTOUTs = PTIN7 = PTINg:
a

b
-

G]

P;: Points-to Analysis using L;

PTOUTs = PTIN; = PTINg:
a_ b

N
o R

X, a x/ng,b —

y—& =]

y z

Interprocedural Heap Analysis

Ly: Liveness after P,

LVINg = LVOUT7 = LVOUTs:

LVIN; (considering a =’ x):

ONOMONO)
LVINg (considering b ™= x):
ONORONO)

LVOUTg = LVIN; U LVINg;:

®. ® ®.®

LVINg = LVOUT7 = LVOUTg:

LVIN; (considering a ™=* x):
LVINg (considering b # x):

LVOUT = LVIN U LVINg;:

ORONO

Proposed Approach

Ly: Liveness after P,
LVINg = LVOUT7 = LVOUTg:

a ™= x):

LVIN; (considering
o - o

/SRR

We are not performing “materialization”.

@ P; does not use Py and L, does not use L.

@ These are new passes from scratch! @
o L; uses P;_1 for implicit updates. [
@ P; uses L; for expressibility.

\ / P;: Points-to Analysis using L; LT//N7 (considering a (I x):
s, PTOU;'6 — PTIN; = PTINg:
a \ LVINg (considering b # x):
S0 x—{S} S5k 0
xa x/nb - LVOUTs = LVIN; U LVINg:
y—{%&] z—{5] OnONO
y z

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 12 / 32

Proposed Approach

o Key idea: distinguish between objects accessible by distinct sets of
access patterns.
@ Thus, our approach is more precise than naive summarization in that:

© Unnecessary may-aliases are avoided.
© Useful must-aliases are discovered.

@ Inter-dependence of liveness and points-to analysis:
@ Perform naive points-to (summarize on alloc sites).
@ Backward analysis to get huge liveness info (sound but imprecise).
© Again do points-to, distinguishing on access patterns found above.
© Another round of backward analysis to get precise liveness info.
© Fixed point...?

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 13 / 32

Accessor Relationship Graph

Symbol | Definition Cardinality

%4 Variables Proportional to program size
M Memory allocation sites | Proportional to program size
R Field dereference points | Proportional to program size
A Access graph nodes V| +|V| x|R|

H Heap graph nodes |M| x 21Al

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 14 / 32

Accessor Relationship Graph

Symbol | Definition Cardinality

%4 Variables Proportional to program size
M Memory allocation sites | Proportional to program size
R Field dereference points | Proportional to program size
A Access graph nodes V| +|V]| x|R|

H Heap graph nodes |M| x 21Al

Definition

Accessor Relationship Graph is a 3-tuple (E,, Ef, summary), where:
e E,CVxXxH
e ErCHXFxH

e summary : H — {true, false}

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 14 / 32

Lattice Representation

Definition

(Ev, Er,summary) 3 (E}, Ef, summary’) if:
e E,CE],
o Er CEf
e Vk € H: summary(k) = summary’(k)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 15 / 32

Lattice Representation

(Ev, Er,summary) 3 (E}, Ef, summary’) if:
e E,CE],
o Er CEf
e Vk € H: summary(k) = summary’(k)

Definition
(Ev, Ef, summary) 1 (E[,, Ef, summary’) = (E]/, E{', summary”) such that:
e E/ =E,UE]
o E/ = EfUE]

e Vk € H: summary” (k) = summary (k) V summary’(k)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 15 / 32

Data Flow Analysis

e Normalization: ©(X, L) = Consistency + Reachability

@@ . --

x/ns x/ng x/ng

"

x/ng x/ng

X

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 16 / 32

Data Flow Analysis

e Normalization: ©(X, L) = Consistency + Reachability

@@ . --

x/ns x/ng x/ng

"

x/ng x/ng

X

@ Data Flow Equations:

PTINy = 1 ©(PTOUT,, LVIN,)
pEpred(b)

PTOUT, = O(f,(PTIN), LVOUT,)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 16 / 32

System Model

o [:S x AP — {true, false} (Results of liveness analysis)
o P:S x AP x AP — {true, false} (Results of points-to analysis)
o HLA: P > 1 (Heap Liveness Analysis)
e PTA:L - P (Heap Points-To Analysis)

Rohan Padhye (IIT Bombay)

Lo = As\a.false
Vi>0: P = PTA(L)
Vi>0: 141 = HLA(P)

Interprocedural Heap Analysis MTP 17 / 32

System Model

o [:S x AP — {true, false} (Results of liveness analysis)
o P:S x AP x AP — {true, false} (Results of points-to analysis)
o HLA: P > 1 (Heap Liveness Analysis)
e PTA:L - P (Heap Points-To Analysis)

Lo = As\a.false
Vi>0: P _PTA(Z)
LA(F

Vi>0:Li=)
o I;C Zj iff Vs € S,Va e AP : Li(s,a) = Zj(s, a)
o P C P;iffYs € S,Yac AP,Yb € AP : Pi(s,a,b) = Pj(s, a, b)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 17 / 32

Precision of Liveness

LoPoly Pl PolsPsly---

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 18 / 32

Precision of Liveness

LoPoli PLly PolsPyly--

The results of the second round of heap liveness analysis is the most
precise result which is also sound. That is, Vk > 0: Ly C L.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 18 / 32

Precision of Liveness

LoPoli PLly PolsPyly--

The results of the second round of heap liveness analysis is the most
precise result which is also sound. That is, Vk > 0: Ly C L.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 18 / 32

Precision of Liveness

LoPoly Pl PolsPsly---

The results of the second round of heap liveness analysis is the most
precise result which is also sound. That is, Vk > 0: Ly C L.

Proof.

Vk>0:1o C Ly (By Definition)
Vk>0: Py D Py (Lemma 1)
Vk > 0: Zl D) Zk+1 (Lemma 2)
Vk>0:P, C Py (Lemma 1)
Vk>0:1C Lo (Lemma 2)
Vk>0:1, C L, (Step3and5)

O

4

o Gl o> W =

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 18 / 32

Outline

© Interprocedural Analysis
@ Existing Frameworks
@ Our Framework: Value Contexts
@ The Role of Call Graphs

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 19 / 32

Interprocedural Analysis

@ No existing implementation of inter-procedural heap reference analysis

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 20 / 32

Interprocedural Analysis

@ No existing implementation of inter-procedural heap reference analysis
@ Soot has excellent API for data flow analysis - only intraprocedural

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 20 / 32

Interprocedural Analysis

@ No existing implementation of inter-procedural heap reference analysis

@ Soot has excellent API for data flow analysis - only intraprocedural
o IFDS/IDE solver [Bodden, SOAP 2012]

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 20 / 32

Interprocedural Analysis

@ No existing implementation of inter-procedural heap reference analysis

@ Soot has excellent API for data flow analysis - only intraprocedural
o IFDS/IDE solver [Bodden, SOAP 2012]
o f({xy,2}) = f({x}) N f({yH) nf({z})

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 20 / 32

Interprocedural Analysis

@ No existing implementation of inter-procedural heap reference analysis

@ Soot has excellent API for data flow analysis - only intraprocedural
o IFDS/IDE solver [Bodden, SOAP 2012]
o f({x,y,2}) = f({x}) M f({y}H) M f({z})

o Functions on 2P reduced to functions on D

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 20 / 32

Interprocedural Analysis

@ No existing implementation of inter-procedural heap reference analysis
@ Soot has excellent API for data flow analysis - only intraprocedural
o IFDS/IDE solver [Bodden, SOAP 2012]

o f({x,y,2}) = f({x}) M F({y}) M F({z})

o Functions on 2P reduced to functions on D
o Modelled as a graph reachability problem

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 20 / 32

Interprocedural Analysis

@ No existing implementation of inter-procedural heap reference analysis

@ Soot has excellent API for data flow analysis - only intraprocedural
o IFDS/IDE solver [Bodden, SOAP 2012]
F({xy,2}) = F() T F({yh) nf({z})

o Functions on 2P reduced to functions on D
o Modelled as a graph reachability problem
e Main limitation: Requires distributive flow functions

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 20 / 32

Interprocedural Analysis

@ No existing implementation of inter-procedural heap reference analysis

@ Soot has excellent API for data flow analysis - only intraprocedural
o IFDS/IDE solver [Bodden, SOAP 2012]
o f({x,y,2}) = f({x}) M f({y}H) M f({z})

Functions on 2P reduced to functions on D
Modelled as a graph reachability problem

Main limitation: Requires distributive flow functions
Not suitable for many types of heap analysis

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 20 / 32

Interprocedural Analysis

@ No existing implementation of inter-procedural heap reference analysis

@ Soot has excellent API for data flow analysis - only intraprocedural
o IFDS/IDE solver [Bodden, SOAP 2012]
o f({x,y,2}) = f({x}) M f({y}H) M f({z})

Functions on 2P reduced to functions on D
Modelled as a graph reachability problem

Main limitation: Requires distributive flow functions
Not suitable for many types of heap analysis

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 20 / 32

Interprocedural Analysis

@ No existing implementation of inter-procedural heap reference analysis

@ Soot has excellent API for data flow analysis - only intraprocedural
o IFDS/IDE solver [Bodden, SOAP 2012]
o f({x,y,2}) = f({x}) M f({y}H) M f({z})

Functions on 2P reduced to functions on D
Modelled as a graph reachability problem

Main limitation: Requires distributive flow functions
Not suitable for many types of heap analysis

n
vl

n
v ~{ofo]
X

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 20 / 32

Interprocedural Analysis

The most general and precise solutions:

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 21 /32

Interprocedural Analysis

The most general and precise solutions:
o Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 21 /32

Interprocedural Analysis

The most general and precise solutions:
o Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]

e Functional (flow functions for call statements) [Sharir & Pnueli, 1981]

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 21 /32

Interprocedural Analysis

The most general and precise solutions:
o Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]
e Functional (flow functions for call statements) [Sharir & Pnueli, 1981]

e Function composition method
e Tabulation method

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 21 /32

Interprocedural Analysis

The most general and precise solutions:
o Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]

e Functional (flow functions for call statements) [Sharir & Pnueli, 1981]
e Function composition method
e Tabulation method

e Modified call-strings method [Khedker & Karkare, 2008]

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 21 /32

Interprocedural Analysis

The most general and precise solutions:
o Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]

e Functional (flow functions for call statements) [Sharir & Pnueli, 1981]
e Function composition method
e Tabulation method

@ Modified call-strings method
o Value-based termination of call string construction

[Khedker & Karkare, 2008]

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 21 /32

Interprocedural Analysis

The most general and precise solutions:
o Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]
e Functional (flow functions for call statements) [Sharir & Pnueli, 1981]

e Function composition method
e Tabulation method

e Modified call-strings method [Khedker & Karkare, 2008]
o Value-based termination of call string construction
o Value contexts [Padhye & Khedker, 2013]

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 21 /32

Interprocedural Analysis

The most general and precise solutions:
o Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]
e Functional (flow functions for call statements) [Sharir & Pnueli, 1981]

e Function composition method
e Tabulation method

e Modified call-strings method [Khedker & Karkare, 2008]
o Value-based termination of call string construction
o Value contexts [Padhye & Khedker, 2013]

o Reformulation of tabulation method

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 21 /32

Interprocedural Analysis

The most general and precise solutions:
o Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]
e Functional (flow functions for call statements) [Sharir & Pnueli, 1981]

e Function composition method
e Tabulation method

e Modified call-strings method [Khedker & Karkare, 2008]
o Value-based termination of call string construction
o Value contexts [Padhye & Khedker, 2013]

e Reformulation of tabulation method
o Suitable for bi-directional interleaved analyses

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 21 /32

Interprocedural Analysis

The most general and precise solutions:
o Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]
e Functional (flow functions for call statements) [Sharir & Pnueli, 1981]

e Function composition method
e Tabulation method

e Modified call-strings method [Khedker & Karkare, 2008]
o Value-based termination of call string construction
o Value contexts [Padhye & Khedker, 2013]

o Reformulation of tabulation method
o Suitable for bi-directional interleaved analyses
o Can map arbitrary call string to value context (dynamic optimizations)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 21 /32

Interprocedural Analysis

The most general and precise solutions:
o Call Strings (maintain an abstract call stack) [Sharir & Pnueli, 1981]
e Functional (flow functions for call statements) [Sharir & Pnueli, 1981]

e Function composition method
e Tabulation method

e Modified call-strings method [Khedker & Karkare, 2008]
o Value-based termination of call string construction

o Value contexts [Padhye & Khedker, 2013]
o Reformulation of tabulation method

e Suitable for bi-directional interleaved analyses
o Can map arbitrary call string to value context (dynamic optimizations)
o Context-sensitive data flow solution (specialization)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 21 /32

Value Contexts

Value contexts:

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP

Value Contexts

Value contexts:
e X = (method, entryValue)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 22 /32

Value Contexts

Value contexts:
e X = (method, entryValue)
o exitValue(X)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 22 /32

Value Contexts

Value contexts:
e X = (method, entryValue)
o exitValue(X)

@ Data Flow Analysis is performed using traditional work-list method

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 22 /32

Value Contexts

Value contexts:
e X = (method, entryValue)
o exitValue(X)
@ Data Flow Analysis is performed using traditional work-list method

o Work-list contains (context, node) pairs

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 22 /32

Value Contexts

Value contexts:
e X = (method, entryValue)
exitValue(X)
Data Flow Analysis is performed using traditional work-list method

Work-list contains (context, node) pairs
Call-sites: Find value context X = (method, entryValue)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 22 /32

Value Contexts

Value contexts:
e X = (method, entryValue)
exitValue(X)
Data Flow Analysis is performed using traditional work-list method

Work-list contains (context, node) pairs
Call-sites: Find value context X = (method, entryValue)
e Found: Re-use exitValue(X)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 22 /32

Value Contexts

Value contexts:
e X = (method, entryValue)
exitValue(X)
Data Flow Analysis is performed using traditional work-list method
Work-list contains (context, node) pairs

Call-sites: Find value context X = (method, entryValue)

e Found: Re-use exitValue(X)
o Not found: Create new X and add all nodes to work-list

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 22 /32

Value Contexts

Value contexts:
e X = (method, entryValue)
o exitValue(X)
@ Data Flow Analysis is performed using traditional work-list method
o Work-list contains (context, node) pairs

o Call-sites: Find value context X = (method, entryValue)

e Found: Re-use exitValue(X)
o Not found: Create new X and add all nodes to work-list
o Record transition from this call-site to X

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 22 /32

Value Contexts

Value contexts:
e X = (method, entryValue)
o exitValue(X)
@ Data Flow Analysis is performed using traditional work-list method
o Work-list contains (context, node) pairs

o Call-sites: Find value context X = (method, entryValue)
e Found: Re-use exitValue(X)
o Not found: Create new X and add all nodes to work-list
o Record transition from this call-site to X

o Exit-sites: Set exitValue(X) and add callers to work-list

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 22 /32

Example - Sign Analysis

@

s [zeturn <]

C4

3

Context | Proc. | Entry | Exit T
VA ERN
-0 +
NS
1
Component
Value Contexts Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

n

ca|q = f(p, -3) n3

C4

3

i ()

G|v = f(-u, w

c=axb &lc =

s [zeturn <]

Context

Proc.

Entry

Exit

Xo

main

Value Contexts

Rohan Padhye (IIT Bombay)

Interprocedural Heap Analysis

g(10) ne

-
VA ERN
-0 +
NS
1
Component

Lattice

MTP 23 /32

Example - Sign Analysis

(Xo,
C

C4

3

)
m

i ()

G|v = f(-u, w

c=axb &lc =

s [zeturn <]

Context

Proc.

Entry

Exit

Xo

main

Value Contexts

Rohan Padhye (IIT Bombay)

Interprocedural Heap Analysis

g(10) ne

-
VA ERN
-0 +
NS
1
Component

Lattice

MTP 23 /32

Example - Sign Analysis

(X0, T)
m
(Xo, p™)

Xo,

jos)

C4

3

i ()

G|v = f(-u, w

M3 |c=ax*xb| ¢|lc=

Context

Proc.

Entry

Exit

Xo

main

Value Contexts

Rohan Padhye (IIT Bombay)

@

s [zeturn <]

Interprocedural Heap Analysis

g(10) ne

-
VA ERN
-0 +
NS
1
Component

Lattice

MTP 23 /32

Example - Sign Analysis

(X0, T)
m
(Xo, p™)

Xo,

jos)

C4

3

i ()

G|v = f(-u, w

M3 |c=ax*xb| ¢|lc=

Context | Proc. | Entry | Exit
Xo main T T
X1 f ath™ T

Value Contexts

Rohan Padhye (IIT Bombay)

@

s [zeturn <]

Interprocedural Heap Analysis

g(10) ne

-
VA ERN
-0 +
NS
1
Component

Lattice

MTP 23 /32

Example - Sign Analysis

)
Xo, p)

c|q = f(p, -3) M3lc=ax*xb| aolc=g(0) "6

@

s [zeturn <]

(Xo,
(

C4

3

Context | Proc. | Entry | Exit T
Xo main T T c _ 4 (‘) N +
X1 f atb— | T L N4
Xo X1 N
Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(X1,ath™)

)
Xo, p)

c|q = f(p, -3) M3lc=ax*xb| aolc=g(0) "6

@

s [zeturn <]

(Xo,
(

C4

3

Context | Proc. | Entry | Exit T
Xo main T T c _ 4 (‘) N +
X1 f atb— | T L N4
Xo X1 N
Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(%o, T) (X1, 2767)
(Xo, p*) (X,a7b7)

c|q = f(p, -3) M3lc=ax*xb| aolc=g(0) "6

@

s [zeturn <]

C4

3

Context | Proc. | Entry | Exit T
Xo main T T c _ 4 (‘) N +
X1 f atb— | T L N4
Xo X1 N
Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(%o, T) (X1, 2767)
(Xo, p*) (X,a7b7)

c|q = f(p, -3) M3lc=ax*xb| aolc=g(0) "6

@

s [zeturn <]

Context | Proc. | Entry | Exit T
Xo main T T c _ 4 (‘) N +
X1 f atb— | T L N4
X g ut T Xo X1 n
Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(%o, T) (X1, 2767)
(Xo, p*) (X,a7b7)

c|q = f(p, -3) M3lc=ax*xb| aolc=g(0) "6

@

s [zeturn <]

Context | Proc. | Entry | Exit T
Xo main T T _ 4 (‘) N +
_ 1 ()
X1 f ath T = N4
X g ut T Xo X1 X2 n
Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

-
(X1,a"b (Xa, u™)

))
Xo, p™) (X,a7b7)

c|q = f(p, -3) M3lc=ax*xb| aolc=g(0) "6

@

s [zeturn <]

(Xo,
(

Context | Proc. | Entry | Exit s "‘F N
Xo main T T _ 0 +
_ 1 ()
X1 f ath T = |
X XX N
Xo g ut T 0 1 2 n
Component

Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(X0, p™)

c|q = f(p, -3) M3lc=ax*xb| aolc=g(0) "6

-
(X1,a"b (Xa, u™)

)
. o[t
(X1,a"b™)

Context | Proc. | Entry | Exit
Xo main T T
X1 f ath™ T
Xo g ut T
X3 £ a bt | T

Value Contexts

Rohan Padhye (IIT Bombay)

@

s [zeturn <]

-
VRN

(5] (o)) - 0 +
X XX N7

Component
Context Transitions Lattice

Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(X0, p™)

c|q = f(p, -3) M3lc=ax*xb| aolc=g(0) "6

-
(X1,a"b (Xa, u™)

)
. o[t
(X1,a"b™)

Context | Proc. | Entry | Exit
Xo main T T
X1 f ath™ T
Xo g ut T
X3 £ a bt | T

Value Contexts

Rohan Padhye (IIT Bombay)

@

s [zeturn <]

-
VRN

(=] &) c3 - 0 +
X X X% X N7
Component
Context Transitions Lattice

Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(%0, T) e 0, ut)

(X0, p*) (X1,ath™)

alq = £, -3) mlc=ax*b| clc=g0) ne [return v |

@

s [zeturn <]

Context | Proc. | Entry | Exit s "‘F N
Xo main T T _
_ c1 (o5} c3 0 +
X1 f ath T P G N4
X g ot LT Xo Xi X X3 N
—pt
X3 f ab il Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(%0, T) e 0, ut)

" (X1,ath™)
<X0»P) Xg,a’bJr)

alq = £, -3) mlc=ax*b| clc=g0) ne [return v |

@

s [zeturn <]

Context | Proc. | Entry | Exit s "‘F N
Xo main T T _
_ c1 (o5} c3 0 +
X1 f ath T P G N4
X g ot LT Xo Xi X X3 N
—pt
X3 f ab il Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(X0, T) Eﬁ; Zt?; (Xa, ut)

" (X1,ath™)
(X0, p™) nga—b+>

alq = £, -3) mlc=ax*b| clc=g0) ne [return v |

@

s [zeturn <]

Context | Proc. | Entry | Exit T
Xo main T T 7/ N
_ a 1o 3 0 +
X1 f ath T P G N4
X g ut T Xo X1 Xa X N
— @
X3 f ab il Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(X, T) (X1,a"b™)

(X3, 2~ b*) (X2, ut)
(X0,) ol
alq = £, -3) M3 c = 6 [return v]

Context | Proc. | Entry | Exit T
Xo main T T 7/ N
_ a 1o 3 0 +
X1 f ath T P G N4
X g ut T Xo X1 Xa X N
— @
X3 f ab il Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(X, T) (X1,a"b™)

4 (Xo, u™)
(X3,a b)
" _ (X1,ath™)
(Xo, p™) (X3,a~b*) X3,a~ bt)
alq = £, -3) mlc = 6 [return v]

Context | Proc. | Entry | Exit T
Xo main T T 7/ N
_ a 1o 3 0 +
X1 f ath T P G N4
X g ut T Xo X1 Xa X N
— @
X3 f ab il Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

0.T) b 0)
" _ (X1,ath™)

(Xo, p™) (X3,a~b*) X3,a~ bt)

alq = £, -3) Mlc=axhb 6 [return v]

(X3,a7b*c™)

Context | Proc. | Entry | Exit T
Xo main T T 7/ N
_ a 1o 3 0 +
X1 f ath T P G N4
X g ut T Xo X1 Xa X N
— @
X3 f ab il Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(X0, T) Eﬁ; Zf?g (X, ut)
" B (Xi,aTb™)

(Xo, p™) (X3,a~b*) X3,a~ bt)

alq = £, -3) mlc=ax*b| clc=g0) ne [return v |

X3,a~ bt~
(X, ambe™) (X3, a~b")

(X3,a~btc™)

s [zeturn <]

Context | Proc. | Entry | Exit T
Xo main T T 7/ N
_ a 1o 3 0 +
X1 f ath T P G N4
X g ut T Xo X1 Xa X N
— @
X3 f ab il Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

Xo,

ath™
b e

(X, T)
m 2 v = £(-u, w
(X0, ") (Xs,a- b*) il

c|q = f(p, -3) M3lc=ax*xb| aolc=g(0) "6
(X3,a=btc™)
(X3,a~btc™)

<X3, a- b+>
.

Context | Proc. | Entry Exit T
Xo main T T 7/ N
_ a o a 0o +
X1 f ath T P G N4
Xo g ut T Xo X1 X2 ~— X3 €
—pt —pt - e/}
X3 f a_b ab’c Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

Xo

ath™
b e

(X0, T)
(X0, p™) (X3,a~ bt) %Zt?; (Xo, utv™)

c|q = f(p, -3) M3lc=ax*xb| aolc=g(0) "6
(X3,a=btc™)
(X3,a~btc™)

<X3, a- b+>
.

Context | Proc. | Entry Exit s "‘F N
Xo main T T _
_ a o a 0+
X1 f ath T P G N4
Xo g ut T Xo X1 X2 ~— X3 €
—pt —pt - e/}
X3 f a_b ab’c Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

Xo

ath™
b e

(X0, T)
(X0, p™) (X3,a~ bt) %Zt?; (Xo, utv™)

c|q = f(p, -3) M3lc=ax*xb| aolc=g(0) "6
(X3,a=btc™)
(X3,a~btc™)

<X3, a- b+>
.

Context | Proc. | Entry Exit T
Xo main T T 7/ N
_ c1 (o5} c3 0 +
X1 f ath T P G N4
X> g ut utv™ Xo X1 Xo X i
—pt — bt o)
X3 f a_b ab’c Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(X0, T)

o
(Xo, p*) (X3,a~bt) <§;:Z—i+§ (X2, utv™)
M3ic=ax*xb| alc=g(10) "6

(X3,a~b*c™)

(X3,a7b*c™)

(X3,a~btc™)

s [zeturn <]

Context | Proc. | Entry Exit T
Xo main T T 7/ N
_ c1 (o5} c3 0 +
X1 f ath T P G N4
X> g ut utv™ Xo X1 Xo X i
—pt — bt o)
X3 f a_b ab’c Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

Xo

X1,atb™
(X, T) éxijszJr; (Xo, u™)
X1,atb™
(X0, p™) (X3, a=b") <Xizsz+§ (Xo,utv™)
R (X1,atb=c™)
(X3, a7b%cT) <X§,a’b+c’)
(X3,a~btc™)
.
Context | Proc. | Entry Exit s "‘F N
Xo main T T _
_ c1 (o5} c3 0 +
X1 f ath T P G N4
X5 g ut utv™ Xo X1 X2 — X3 1
—pt —pte— (e}
X3 f a_b ab’c Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

Xo

(X0, T) éﬁ; Zt?; (X, u™*)
(X0, p*) &zt’;; % Zt?; (X, utv—)
afccgam]

X1,atb~=c™)
(X3,a=btc™)

(X3,a~btc™)

s [zeturn <]

Context | Proc. | Entry Exit T
Xo main T T 7/ N
_ c1 (o5} c3 0 +
X1 f ath T P G N4
X> g ut utv™ Xo X1 Xo X i
—pt — bt o)
X3 f a_b ab’c Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(X0, T)

_ X;. ath—
(Xo, p*) gi;’zt[;ﬁg <X;:z*b+§ (Xo, utv)
Saro

X1,atb~=c™)
(X3,a=btc™)

(X3,a~btc™)

s [zeturn <]

Context | Proc. | Entry Exit T
Xo main T T 7/ N
_ c1 (o5} c3 0 +
X1 f ath T P G N4
X> g ut utv™ Xo X1 Xo X i
—pt — bt o)
X3 f a_b ab’c Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(X0, T)

_ X;. ath—
(Xo, p*) gi;’zt[;ﬁg <X;:z*b+§ (Xo, utv)
Saro

X1,atb~=c™)
(X3,a=btc™)

(X1,atb=c™)
X3, a~btc™)

33
s [zeturn <]

Context | Proc. | Entry Exit T
Xo main T T 7/ N
_ c1 (o5} c3 0 +
X1 f ath T P G N4
X> g ut utv™ Xo X1 Xo X i
—pt — bt o)
X3 f a_b ab’c Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

ath™
b e

X1,at b~ (X1,a"b™) -
oo a-61 Xova~b*) (X, utvT)
olc-ga0] m

X1,atb~=c™)
(X3,a=btc™)

(X1,atb=c™)
X3, a~btc™)

33
s [zeturn <]

Context | Proc. | Entry Exit T
Xo main T T _ 4 (‘) N +
X1 f ath~ | atb c™ a 2 09 N4
X5 g ut utv™ Xo X1 X2 ~— X3 1
X3 f ab' | abcn @ Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

ath™
b e

X1,at b~ (X1,a"b™) -
oo a-61 Xova~b*) (X, utvT)
olc-ga0] m

X1,atb~=c™)
(X3,a=btc™)

(X1,atb=c™)
X3, a~btc™)

33
s [zeturn <]

Context | Proc. | Entry Exit T
Xo main T T _ 4 (‘) N +
X1 f ath~ | atb c™ a 2 09 N4
X5 g ut utv™ Xo X1 X2 ~— X3 1
X3 f ab' | abcn @ Component
Value Contexts Context Transitions Lattice

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 23 /32

Example - Sign Analysis

(X1,a"b™)
(X3, a=b*)

g
(X1,atb™) (X1, atb™)
(Xs,a~b*) X3,a~ bt)

@ lc = g(10)

X1,atb~=c™)
(X3,a=btc™)

(X1,atb=c™)
X3, a~btc™)

33
s [zeturn <]

Context | Proc. | Entry Exit
Xo main T T
X1 f ath~ | atb c™ a 2 09
X g ut utv Xo \Xl/' X2 — X3
X3 f a bt | abtc™ c 2

Value Contexts

Rohan Padhye (IIT Bombay)

Context Transitions

Interprocedural Heap Analysis

(Xo, u™)

v = 2w,)

(Xo, utv)

o [rotur v]

.
Z 1N
-0 +
NS
1

Component
Lattice

MTP 23 /32

Example - Sign Analysis

Xo,

(
(

Xo,

)
m
pt)

(X1,a"b™)
(X3, a=b*)

g
(X1,atb™) (X1, atb™)
(Xs,a~b*) X3,a~ bt)

@ lc = g(10)

X1,atb~=c™)
(X3,a=btc™)

(X1,atb=c™)
X3, a~btc™)

33
s [zeturn <]

Context | Proc. | Entry Exit
Xo main T T
X1 f ath~ | atb c™ a 2 09
X g ut utv Xo \Xl/' X2 — X3
X3 f a bt | abtc™ c 2

Value Contexts

Rohan Padhye (IIT Bombay)

Context Transitions

Interprocedural Heap Analysis

(Xo, u™)

v = 2w,)

(Xo, utv)

o [rotur v]

.
Z 1N
-0 +
NS
1

Component
Lattice

MTP 23 /32

Example - Sign Analysis

Xo,

(
(

Xo,

)
m
pt)

(X1,a"b™)
(X3, a=b*)

g
(X1,atb™) (X1, atb™)
(Xs,a~b*) X3,a~ bt)

@ lc = g(10)

X1,atb~=c™)
(X3,a=btc™)

(X1,atb=c™)
X3, a~btc™)

33
s [zeturn <]

Context | Proc. | Entry Exit
Xo main T ptq=r-
X1 f ath~ | atb c™ a 2 09
X g ut utv Xo \Xl/' X2 — X3
X3 f a bt | abtc™ c 2

Value Contexts

Rohan Padhye (IIT Bombay)

Context Transitions

Interprocedural Heap Analysis

(Xo, u™)

v = 2w,)

(Xo, utv)

o [rotur v]

.
Z 1N
-0 +
NS
1

Component
Lattice

MTP 23 /32

Implementation Framework

InterPr ysis<M,N,A Context<M,N,A>
+ topValue() : A + getMethod(): M
+ boundaryValue(M) : A + getEntryValue() : A
+ copy(A) : A + getExitValue() : A
+ meet(AA) : A + getValueBefore(N) : A
+ normalFlowFunction(Context<M,N,A>, N, A) : A + getValueAfter(N) : A
+ callEntryFlowFunction(Context<M,N,A>, M, N, A) : A

+ callExitFlowFunction(Context<M,N,A>, M, N, A) : A
+ callLocalFlowFunction(Context<M,N,A>, N, A) : A
+ programRepreser 10) : ProgramRepr 1<MN> ProgramRepresentation<M,N>
+ doAnalysis() : void

+ getContexts() : Map<M,List<Context<M,N,A>>>

+ getMeetOverPathsSolution() : DataFlowSolution<M,N,A> + getEntryPoints() : List<M>
+ getControlFlowGraph(M) : DirectedGraph<N>
+ isCall(N) : boolean
+ resolveTargets(M, N) : List<M>
ForwardinterProceduralAnalysis<M,N,A> BackwardinterProceduralAnalysis<M,N,A>
+ doAnalysis() : void + doAnalysis() : void

https://github.com/rohanpadhye/vasco

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP

https://github.com/rohanpadhye/vasco

The Role of Call Graphs

o Context-sensitivity only useful if call graph is precise

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 25 /32

The Role of Call Graphs

o Context-sensitivity only useful if call graph is precise

@ OOP: Use points-to analysis to resolve virtual calls

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 25 /32

The Role of Call Graphs

o Context-sensitivity only useful if call graph is precise
@ OOP: Use points-to analysis to resolve virtual calls

@ Imprecise points-to analysis = “spurious”’ edges

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 25 /32

The Role of Call Graphs

Context-sensitivity only useful if call graph is precise

OOP: Use points-to analysis to resolve virtual calls

Imprecise points-to analysis = “spurious” edges

SPARK: Thousands of spurious edges even for small programs

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 25 /32

The Role of Call Graphs

Context-sensitivity only useful if call graph is precise

OOP: Use points-to analysis to resolve virtual calls

Imprecise points-to analysis = “spurious” edges

SPARK: Thousands of spurious edges even for small programs
e e.g. Over 250 targets for x.hashCode() in HashSet

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 25 /32

The Role of Call Graphs

Context-sensitivity only useful if call graph is precise

OOP: Use points-to analysis to resolve virtual calls

Imprecise points-to analysis = “spurious” edges

SPARK: Thousands of spurious edges even for small programs
e e.g. Over 250 targets for x.hashCode() in HashSet

Affects efficiency and precision of interprocedural analysis

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 25 /32

The Role of Call Graphs

o Context-sensitivity only useful if call graph is precise

@ OOP: Use points-to analysis to resolve virtual calls

@ Imprecise points-to analysis = “spurious” edges

@ SPARK: Thousands of spurious edges even for small programs
e e.g. Over 250 targets for x.hashCode() in HashSet

o Affects efficiency and precision of interprocedural analysis
@ Points-to Analysis using Value Contexts

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 25 /32

The Role of Call Graphs

o Context-sensitivity only useful if call graph is precise

@ OOP: Use points-to analysis to resolve virtual calls

@ Imprecise points-to analysis = “spurious” edges

@ SPARK: Thousands of spurious edges even for small programs
e e.g. Over 250 targets for x.hashCode() in HashSet

o Affects efficiency and precision of interprocedural analysis
@ Points-to Analysis using Value Contexts
o Flow and context-sensitive points-to analysis (FCPA)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 25 /32

The Role of Call Graphs

o Context-sensitivity only useful if call graph is precise

@ OOP: Use points-to analysis to resolve virtual calls

@ Imprecise points-to analysis = “spurious” edges

@ SPARK: Thousands of spurious edges even for small programs
e e.g. Over 250 targets for x.hashCode() in HashSet

o Affects efficiency and precision of interprocedural analysis

@ Points-to Analysis using Value Contexts

o Flow and context-sensitive points-to analysis (FCPA)
o Context-sensitive call graph constructed on-the-fly

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 25 /32

Results of Points-To Analysis

@ Tested on 7 benchmarks from SPEC JVM98 and DaCapo 2006

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 26 / 32

Results of Points-To Analysis

@ Tested on 7 benchmarks from SPEC JVM98 and DaCapo 2006

e Time to analyze: 1.15 sec (compress) to 697.4 sec (antlr)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 26 / 32

Results of Points-To Analysis

@ Tested on 7 benchmarks from SPEC JVM98 and DaCapo 2006
e Time to analyze: 1.15 sec (compress) to 697.4 sec (antlr)

o Average contexts per method: 4.24 (mpegaudio) to 25.04 (jess)

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 26 / 32

Results of Points-To Analysis

Tested on 7 benchmarks from SPEC JVM98 and DaCapo 2006
Time to analyze: 1.15 sec (compress) to 697.4 sec (antlr)

Average contexts per method: 4.24 (mpegaudio) to 25.04 (jess)
Number of interprocedural paths in resulting call graph (for k = 10):

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 26 / 32

Results of Points-To Analysis

Tested on 7 benchmarks from SPEC JVM98 and DaCapo 2006
Time to analyze: 1.15 sec (compress) to 697.4 sec (antlr)

Average contexts per method: 4.24 (mpegaudio) to 25.04 (jess)
Number of interprocedural paths in resulting call graph (for k = 10):
e Over 96% less paths in FCPA over SPARK for 3 benchmarks

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 26 / 32

Results of Points-To Analysis

@ Tested on 7 benchmarks from SPEC JVM98 and DaCapo 2006
e Time to analyze: 1.15 sec (compress) to 697.4 sec (antlr)

o Average contexts per method: 4.24 (mpegaudio) to 25.04 (jess)
@ Number of interprocedural paths in resulting call graph (for k = 10):

e Over 96% less paths in FCPA over SPARK for 3 benchmarks
o 62-92% less paths in FCPA over SPARK for remaining benchmarks

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 26 / 32

Outline

@ Access Graphs for Garbage Collection
o Existing ldeas
@ Novel Technique: Dynamic Heap Pruning

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP

Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 28 / 32

Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?
© Assign null to dead access paths.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 28 / 32

Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?
© Assign null to dead access paths.
o Requires availability and anticipability analysis to prevent exceptions.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 28 / 32

Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?
© Assign null to dead access paths.

o Requires availability and anticipability analysis to prevent exceptions.
e Cannot nullify access paths that are not provably safe to dereference.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 28 / 32

Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?
© Assign null to dead access paths.

o Requires availability and anticipability analysis to prevent exceptions.
e Cannot nullify access paths that are not provably safe to dereference.
o The safety analyses themselves depend on alias information.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 28 / 32

Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?
© Assign null to dead access paths.

o Requires availability and anticipability analysis to prevent exceptions.
e Cannot nullify access paths that are not provably safe to dereference.
o The safety analyses themselves depend on alias information.

@ Increase in code size and possible performance penalty.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 28 / 32

Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?
© Assign null to dead access paths.
o Requires availability and anticipability analysis to prevent exceptions.
Cannot nullify access paths that are not provably safe to dereference.
The safety analyses themselves depend on alias information.
Increase in code size and possible performance penalty.

o
o
o
e Redundant nullification of same reference from aliased access paths.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 28 / 32

Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?
© Assign null to dead access paths.
o Requires availability and anticipability analysis to prevent exceptions.
e Cannot nullify access paths that are not provably safe to dereference.
o The safety analyses themselves depend on alias information.
@ Increase in code size and possible performance penalty.
e Redundant nullification of same reference from aliased access paths.

© Augment garbage collector to traverse access graphs.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 28 / 32

Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?
© Assign null to dead access paths.

o Requires availability and anticipability analysis to prevent exceptions.
e Cannot nullify access paths that are not provably safe to dereference.
o The safety analyses themselves depend on alias information.

@ Increase in code size and possible performance penalty.

e Redundant nullification of same reference from aliased access paths.

© Augment garbage collector to traverse access graphs.
o No need of safety analysis.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 28 / 32

Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?
© Assign null to dead access paths.

o Requires availability and anticipability analysis to prevent exceptions.
e Cannot nullify access paths that are not provably safe to dereference.
o The safety analyses themselves depend on alias information.
@ Increase in code size and possible performance penalty.
e Redundant nullification of same reference from aliased access paths.

© Augment garbage collector to traverse access graphs.

o No need of safety analysis.
o Perfect alias information available at run-time.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 28 / 32

Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?
© Assign null to dead access paths.

o Requires availability and anticipability analysis to prevent exceptions.
e Cannot nullify access paths that are not provably safe to dereference.
o The safety analyses themselves depend on alias information.

@ Increase in code size and possible performance penalty.

e Redundant nullification of same reference from aliased access paths.

© Augment garbage collector to traverse access graphs.

o No need of safety analysis.
o Perfect alias information available at run-time.
e Difficult to map named variables and fields to run-time offsets.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 28 / 32

Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?
© Assign null to dead access paths.

o Requires availability and anticipability analysis to prevent exceptions.
e Cannot nullify access paths that are not provably safe to dereference.
o The safety analyses themselves depend on alias information.

@ Increase in code size and possible performance penalty.

e Redundant nullification of same reference from aliased access paths.

© Augment garbage collector to traverse access graphs.

No need of safety analysis.

Perfect alias information available at run-time.

Difficult to map named variables and fields to run-time offsets.
Optimizations after HRA (static or JIT) invalidate access graphs.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 28 / 32

Access Graphs for Garbage Collection

How to use access graphs for improving garbage collection?
© Assign null to dead access paths.

o Requires availability and anticipability analysis to prevent exceptions.
e Cannot nullify access paths that are not provably safe to dereference.
o The safety analyses themselves depend on alias information.

@ Increase in code size and possible performance penalty.

e Redundant nullification of same reference from aliased access paths.

© Augment garbage collector to traverse access graphs.

No need of safety analysis.

o Perfect alias information available at run-time.

e Difficult to map named variables and fields to run-time offsets.

e Optimizations after HRA (static or JIT) invalidate access graphs.

© Dynamic heap pruning - a hybrid approach.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 28 / 32

Dynamic Heap Pruning

Manipulate the heap using a debugger!

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 29 / 32

Dynamic Heap Pruning

Manipulate the heap using a debugger!

© Pause a running program when pruning has to be performed.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 29 /32

Dynamic Heap Pruning

Manipulate the heap using a debugger!

© Pause a running program when pruning has to be performed.
@ For each frame on the call stack do:

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 29 /32

Dynamic Heap Pruning

Manipulate the heap using a debugger!

© Pause a running program when pruning has to be performed.
@ For each frame on the call stack do:

@ Find the paused program point P using return address of next frame
(or PC for top-of-stack).

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 29 /32

Dynamic Heap Pruning

Manipulate the heap using a debugger!

© Pause a running program when pruning has to be performed.
@ For each frame on the call stack do:

@ Find the paused program point P using return address of next frame
(or PC for top-of-stack).

@ Construct the call string o using the sequence of return addresses from
the bottom-of-stack.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 29 /32

Dynamic Heap Pruning

Manipulate the heap using a debugger!

© Pause a running program when pruning has to be performed.
@ For each frame on the call stack do:
@ Find the paused program point P using return address of next frame
(or PC for top-of-stack).
@ Construct the call string o using the sequence of return addresses from
the bottom-of-stack.
© Determine the value context X by traversing ¢ in the context
transition graph.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 29 / 32

Dynamic Heap Pruning

Manipulate the heap using a debugger!

© Pause a running program when pruning has to be performed.
@ For each frame on the call stack do:
@ Find the paused program point P using return address of next frame
(or PC for top-of-stack).
@ Construct the call string o using the sequence of return addresses from
the bottom-of-stack.
© Determine the value context X by traversing ¢ in the context
transition graph.
@ Retrieve the access graphs for point P in context X.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 29 /32

Dynamic Heap Pruning

Manipulate the heap using a debugger!

© Pause a running program when pruning has to be performed.
@ For each frame on the call stack do:

@ Find the paused program point P using return address of next frame
(or PC for top-of-stack).

Construct the call string o using the sequence of return addresses from
the bottom-of-stack.

Determine the value context X by traversing ¢ in the context
transition graph.

Retrieve the access graphs for point P in context X.

Traverse the access graphs from the root variables (stack locals) and
label heap objects with the set of accessor nodes that reach them.

96 o ©0

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 29 /32

Dynamic Heap Pruning

Manipulate the heap using a debugger!
© Pause a running program when pruning has to be performed.

@ For each frame on the call stack do:

@ Find the paused program point P using return address of next frame
(or PC for top-of-stack).

@ Construct the call string o using the sequence of return addresses from
the bottom-of-stack.

© Determine the value context X by traversing ¢ in the context
transition graph.

@ Retrieve the access graphs for point P in context X.

© Traverse the access graphs from the root variables (stack locals) and
label heap objects with the set of accessor nodes that reach them.

© For each labelled object in the heap do:

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 29 /32

Dynamic Heap Pruning

Manipulate the heap using a debugger!
© Pause a running program when pruning has to be performed.

@ For each frame on the call stack do:

@ Find the paused program point P using return address of next frame
(or PC for top-of-stack).

@ Construct the call string o using the sequence of return addresses from
the bottom-of-stack.

© Determine the value context X by traversing ¢ in the context
transition graph.

@ Retrieve the access graphs for point P in context X.

© Traverse the access graphs from the root variables (stack locals) and
label heap objects with the set of accessor nodes that reach them.

© For each labelled object in the heap do:

@ Find the set of live fields by looking at the edges out of every accessor
that reaches it.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 29 / 32

Dynamic Heap Pruning

Manipulate the heap using a debugger!
© Pause a running program when pruning has to be performed.

@ For each frame on the call stack do:

@ Find the paused program point P using return address of next frame
(or PC for top-of-stack).

@ Construct the call string o using the sequence of return addresses from
the bottom-of-stack.

© Determine the value context X by traversing ¢ in the context
transition graph.

@ Retrieve the access graphs for point P in context X.

© Traverse the access graphs from the root variables (stack locals) and
label heap objects with the set of accessor nodes that reach them.

© For each labelled object in the heap do:

@ Find the set of live fields by looking at the edges out of every accessor
that reaches it.
@® Set the value of all other fields (which are dead) to null.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 29 / 32

Dynamic Heap Pruning

Manipulate the heap using a debugger!
© Pause a running program when pruning has to be performed.

@ For each frame on the call stack do:

@ Find the paused program point P using return address of next frame
(or PC for top-of-stack).

@ Construct the call string o using the sequence of return addresses from
the bottom-of-stack.

© Determine the value context X by traversing ¢ in the context
transition graph.

@ Retrieve the access graphs for point P in context X.

© Traverse the access graphs from the root variables (stack locals) and
label heap objects with the set of accessor nodes that reach them.

© For each labelled object in the heap do:

@ Find the set of live fields by looking at the edges out of every accessor
that reaches it.
@® Set the value of all other fields (which are dead) to null.

© Resume the program. Let garbage collection run as normal.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 29 / 32

Outline

© Summary & Future Work

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP

The following were the main contributions of this project:
@ A liveness-driven heap abstraction for precise alias analysis.
@ A generic access graph library implemented in Java.

© A generic inter-procedural data flow analysis framework implemented
in Java.

@ A flow- and context-sensitive points-to analysis implemented in Soot
that constructs precise call graphs.

O A technique for performing dynamic heap pruning implemented using
the Java Debug Interface (JDI).

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 31/32

© Implementation of an inter-procedural liveness-driven heap points-to
analysis.
@ Performance analysis of dynamic heap pruning on real benchmarks.

© Shape analysis using accessor relationship graphs.

Rohan Padhye (IIT Bombay) Interprocedural Heap Analysis MTP 32/32

	Background and Motivation
	Heap Reference Analysis
	Key Issues

	Heap Alias Analysis
	Need for Alias Analysis
	Existing Abstractions
	Proposed Abstraction: Acccessor Relationship Graph

	Interprocedural Analysis
	Existing Frameworks
	Our Framework: Value Contexts
	The Role of Call Graphs

	Access Graphs for Garbage Collection
	Existing Ideas
	Novel Technique: Dynamic Heap Pruning

	Summary & Future Work

