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ABSTRACT
Most software development tools allow developers to subscribe
to notifications about code checked-in by their team members in
order to review changes to artifacts that they are responsible for.
However, past user studies have indicated that this mechanism is
counter-productive, as developers spend a significant amount of
effort sifting through such feeds looking for items that are rele-
vant to them. We present NEEDFEED, a system that models code
relevance by mining a project’s software repository and highlights
changes that a developer may need to review. We evaluate several
techniques to model code relevance, from a naive TOUCH-based
approach to generic HISTORY-based classifiers using temporal code
metrics at file and method-level granularities, which are then im-
proved by building developer-specific models using TEXT-based
features from commit messages. NEEDFEED reduces notification
clutter by more than 90%, on average, with the best strategy giving
an average precision and recall of more than 75%.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments; D.2.7
[Software Engineering]: Distribution, Maintenance and Enhance-
ment—Version control

Keywords
Collaborative software development; version control; mining soft-
ware repositories

1. INTRODUCTION
Software development is a collaborative activity. Multiple de-

velopers work on a project at the same time, checking-in their own
code and accepting others’ changes. Most collaborative develop-
ment environments such as Rational Team Concert [6] or the Web-
based GitHub [1] platform allow developers to sign up for a feed
of code check-in notifications, in the form of emails, RSS feeds
or pop-up alerts. These feeds help developers keep themselves
aware of changes happening in the project’s code-base. Kim [19]
conducted a study to explore developers’ experiences with such
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change feeds. She reported that developers find change notifica-
tions to be very important, especially when the changes affect their
own code. Also, developers like to be notified about changes to
artifacts which they are responsible for, in order to review incoming
changes for possible discrepancies. However, the study revealed
that developers find the existing “laundry list” of notifications to be
inadequate for their information needs. The change feeds are not
personalized and hence developers need to go through every item
to identify changes that might be of relevance to them.

Now, what changes would a developer consider relevant? Fritz
and Murphy [11] found, through a user study, that though the no-
tion of relevance was very subjective, in general developers find
information about artifacts that they have worked on in the past
and likely to continue updating in the future to be more relevant
than information about artifacts that they have not worked on at
all. Hence, the likelihood of a developer modifying a source code
artifact in the future is a good indicator of whether that developer
would find changes involving that artifact to be relevant today.

In his PHD thesis [10], Fritz attempted to answer the question
“Which changes should I know about?”. He modeled a developer’s
knowledge of various code files (called the DOK model) based on
code authorship and recency of interaction with the source code
items in an IDE. In a user study involving 3 developers, he recom-
mended the participants to review changes to bug reports associated
with source code artifacts having high DOK values, and observed
that 4 out of the 6 recommendations were found useful by the
developers in the study. We build upon this work in our paper,
by exploring additional techniques at different granularities and by
empirically evaluating these techniques over a much larger data set.

We present NEEDFEED, a system that models code relevance
to personalize a developer’s change notification feed by highlight-
ing those items that a developer may need to review, by using
the heuristic that developer’s would find those items to be relevant
which they are likely to modify in the future. We explore various
techniques to model code relevance and evaluate these models on
a set of 40 medium-to-large sized projects hosted on GitHub. We
found that, on average, the best strategy reduces notification clutter
by more than 90%, and that more than 75% of the recommended
items are relevant by our definition (precision), while more than
75% of all relevant items are recommended (recall).

We first implemented a naive strategy, which, for every change-
set1, notifies all developers who have modified any of the files
involved in this change-set at least once in the past. We call this
the TOUCH-based strategy, which effectively subscribes users to all

1We use the terms commit and change-set interchangeably to refer
to an atomic set of changes authored by a single developer, which is
logged in a software repository, and which can be used to uniquely
identify the state of the system at some point in time.



changes involving files which they have contributed to, indefinitely.
As compared to a blind strategy that notifies every developer about
all changes in the project, the naive TOUCH-based strategy alone
reduces the notification clutter by 82%, on average, though the
average precision is less than 35%. This means that many change
notifications are sent to developers who never revisit any of the
changed artifacts (and thus could be considered irrelevant). This is
intuitive because developers often make minor edits to files which
they do not regularly work with, and which they may never revisit
in the future. Notifications about changes to these files are not
relevant to them and hence the TOUCH-based strategy is not very
precise.

We then tried to improve on the TOUCH-based strategy by includ-
ing temporal parameters about files modified in a change-set such
as the developer’s code ownership, relative contribution as well as
recency and longevity of changes. These parameters are extracted
from the project’s prior change history, and hence we call this the
HISTORY-based strategy. We first validate that these code metrics
do, in fact, influence our notion of ideal relevance using statistical
tests. We then apply machine learning techniques to train three
different classifiers (Naive Bayes, Decision Tree and Rule-Based)
to predict whether or not a change-set is potentially relevant for a
given developer using these code metrics. With the HISTORY-based
strategy, precision improves to more than 75% without severely
impacting recall, which is more than 75% as well. These models
also appear to generalize across projects.

We then applied these techniques at a different granularity – that
of changes to individual Java methods. We analyze 10 projects
which contain a high proportion of Java files. Our experiments
show that we can further reduce the total volume of notifications
while maintaining similar levels of precision and recall of about
75%.

Finally, we augmented HISTORY-based metrics with TEXT from
commit messages associated with change-sets in order to model
code relevance as a spam filtering problem. This strategy required
building separate models per developer and we present results for
196 developers. The augmented model of TEXT + HISTORY per-
formed better than the only HISTORY-based models, giving an av-
erage precision of 79.8% and average recall of 78.9%.

To summarize, this paper makes the following contributions:

1. A definition of ideal relevance of code changes based on
source code artifact re-visits.

2. An evaluation of different techniques for modeling change
relevance, including the TOUCH-based and HISTORY-based
strategies, at both the file-level and the method-level.

3. An evaluation of developer-specific TEXT-based models which
leverage comments in commit messages.

The rest of this paper is organized as follows. In Section 2, we
formulate four research questions for exploring different strategies
to model change relevance and also define the code metrics we use
in the process. In Section 3, we empirically evaluate our differ-
ent strategies on 40 open-source projects and present our findings.
Section 4 is a discussion on the implications of our evaluation and
other practical considerations in building a relevance-based change
notification filter. We also discuss factors that might threaten the
validity of our results in Section 5. Section 6 presents related work.
We then outline potential future work in Section 7 and conclude in
Section 8. Also, we have publicly provided the data sets used in
this paper on the Web2.

2http://code.comprehend.in:8080/needfeed

2. THEORY
In this section we discuss the theory behind our approach to

modeling code relevance for reducing change notifications.

2.1 Ideal Relevance
We design NEEDFEED as a classifier, which, given a change-

set containing a set of modified artifacts, decides whether or not
it may be relevant to a given developer using one or more of the
strategies discussed below. But in order to train such models and
evaluate their effectiveness, we need an objective measure of ideal
relevance, or ground truth, which is the set of changes that a devel-
oper ideally would have liked to review.

Developers may find others’ changes to be relevant for a vari-
ety of reasons, but in general they would be interested in changes
to artifacts which they are working on, or which they use [11].
One approach for discovering this information is to track work-
items such as tasks or bugs that a developer is working on, but
this is not feasible when targeting a heterogeneous landscape of
projects which use different task management systems that may
or may not link back to source code artifacts. Similarly, we do
not capture information about which source code files a developer
opens or reads, which can be used to develop Degree-of-Interest
(DOI) models [10], as this would require an integration with every
developer’s IDE. The only source of data we rely on is a project’s
change history containing source code check-ins. Hence, a simple
heuristic we use to determine ideal relevance is that if a developer
authors some changes to an artifact, then they would have found
every change that occurred to this artifact by their team members
since their own last modification to the artifact as relevant. This
definition excludes external changes to an artifact before a devel-
oper modifies it for the first time; the intuition being that when a
developer starts working on a new artifact they would read its entire
contents first, and only then make assumptions about its state which
need to be kept up-to-date as their team members make changes.

Ideal Relevance: A change-set ∆ committed at time t1 is
considered ideally relevant to a developer d if d has modified
some artifact in ∆ at times t0 and t2, where t0 < t1 < t2.

As this definition is based on a heuristic, it may result in the
introduction of some bias in our subsequent experiments – this is
discussed in Section 5.

2.2 Strategies
Our first approach to reduce notification clutter is a naive strat-

egy, in which developers are subscribed to all changes by their team
members that include modifications to artifacts that they themselves
have modified at least once in the past. We call this the TOUCH-
based strategy. Our hypothesis is that this naive strategy alone
will reduce the clutter significantly as compared to the default blind
system that broadcasts notifications regarding all changes to every
member in the team. The first research question is thus:

RQ1: How effective is a TOUCH-based subscription strategy
in reducing change notification clutter as compared to a blind
notification broadcast?

The drawback of the TOUCH-based approach is that developers
are subscribed to changes involving files which they may have only
made some minor edits to, but which are not relevant to them.
A common scenario may be when a developer changes a method
declaration in a file that they regularly work with, which causes
their IDE to automatically refactor all invocations of that method,
resulting in a large change-set. The files in which only the method



invocations are changed, are not necessarily relevant to this devel-
oper in the context of their work, and hence the change notification
subscription is unnecessary. Another example would be if a devel-
oper, who did in fact regularly work on a file, changed their role
and started working on a new module. The TOUCH-based strategy
will continue to notify this developer about changes to artifacts in
a module which is no longer relevant to them. Hence, we decided
to explore other code metrics that change along with a project’s
evolution and which may be better indicators of change relevance.

The first metric that we considered was code ownership, which
is the relative amount of an artifact’s current source code that is
authored by a given developer. A developer fully owns an artifact
if all lines of the artifact’s current code have been authored by
them. Artifacts whose contents are authored by multiple developers
may have multiple owners, with a varying fraction of ownership.
Ownership information is easily obtainable using a feature known
as blame or annotate in most SCM tools.

A related metric is relative contribution. If an artifact has been
modified multiple times, then a developer’s relative contribution is
the fraction of these changes that were authored by them. There is
an interesting interplay between code ownership and contribution.
For example, a minor contributor may overwrite all lines of code of
a certain artifact and suddenly become a major owner. Conversely
a developer may make several contributions, but each time fix only
a certain section of the code and hence have low ownership overall.

Apart from these two code metrics, we also consider the exact
points in time a developer modifies a given artifact. The principle
of temporal locality suggests that developers who have recently
modified a given artifact are likely to revisit it soon and hence
changes to such artifacts may be relevant to them. On the other
hand, those who recently changed the artifact may have just fixed
a minor bug, but the people who are really responsible for it may
in fact be the developers who first created the artifact or those who
were involved in its initial evolution, even if it was a long time ago.
Hence, we introduce two new metrics which we call recency and
longevity respectively. Hence, our next research question is:

RQ2: Is there a relationship between code metrics such
as ownership, contribution, recency and longevity, and our
notion of ideal relevance, and if so, how effective is a
HISTORY-based strategy in reducing the volume of change
notifications?

Further, all these metrics can be calculated at different granular-
ities based on what the term “source code artifact” refers to. The
most straightforward granularity is the file-level. The advantage
is that this technique is applicable to all types of content. But
we would also like to explore if change notification clutter can
reduce if code relevance is modeled at a finer granularity of changes
to individual methods in source code files. This exploration is
motivated by the intuition that, although multiple developers may
be working on the same file, they may focus their work on different
sections of that file, for example on different methods in a Java
class. Hence, a change to one of the methods by one developer may
not be interesting to another developer who works on a different set
of methods in the same file. The third research question is thus:

RQ3: Does the volume of change notifications reduce by
using a finer-granularity of changes to individual methods in
a source code file?

Finally, we realize that the problem of reducing change notifi-
cation clutter is similar to the problem of reducing spam in other
information channels such as e-mail. Hence, we also consider the
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Figure 1: An example time-line of commits (change-sets), their
authors and the files changed.

option of augmenting our models with TEXT-based features us-
ing commit messages. However, unlike the HISTORY-based mod-
els which may be generalizable across developers and even across
projects, a TEXT-based classifier needs to learn words that are rele-
vant to a particular developer, and hence a different model must be
trained per developer. Our final research question is:

RQ4: Does the addition of TEXT-based features from com-
mit messages improve the usefulness of code relevance mod-
els for reducing change notifications?

These research questions will be answered with empirical evalu-
ations in Section 3.

2.3 Code Metrics
We now formally define the different code metrics mentioned

above with the help of an example, shown in Figure 1. The four
horizontal lines represent time-lines of four files, named f1 to f4,
which are modified at various points in time through commits c1
to c8. Each commit, or change-set, modifies the files which have
a × symbol in their time-line. The developer who committed the
change-set is mentioned in parenthesis; this example contains change-
sets committed by three developers d1 to d3. For example, c5 is a
change-set committed by developer d1 containing modifications to
files f1 and f4. Note that although this example shows a simplified
linear time-line, in general the change history of a project may be
non-linear due to branching and merging.

Let D be the set of developers in a team, A the set of artifacts
(e.g. files) in the project, and C the set of commits (or change-
sets). We first define some primitives, which are operations usually
supported by version control systems such as Git and hence directly
obtainable:

• changes : C → 2A gives the set of artifacts modified in a
change-set. For example, changes(c6) = {f1, f2, f3}. The
corresponding Git command for this primitive operation is:
git whatchanged COMMIT^!

• author : C → D gives the developer who committed a
change-set. For example, author(c6) = d2. This informa-
tion can be fetched in Git using: git log COMMIT^!

• before : C → 2C is the set of change-sets that the given
commit follows. That is, it is the entire change history of the
project from the start up to the given commit. For example,
before(c6) = {c1, c2, c3, c4, c5}. The corresponding Git
command for this primitive is: git log COMMIT^

• after : C → 2C is the set of change-sets that follow the
given commit, right upto the last commit which resulted in
the current state of the project. For example, after(c6) =
{c7, c8}. The corresponding Git command for this primitive
is: git log COMMIT..



• totalLines : C × A → I is the number of source code
lines that make up the given artifact at the given point in
time (specified by the commit). In Git, a file’s contents at an
arbitrary point in time can be extracted using the command:
git show COMMIT:FILENAME

• ownedLines : C × A × D → I is the number of source
code lines of an artifact at the given point in time which were
authored by the given developer. This information can be
easily extracted in Git on a per-file-level using the command:
git blame COMMIT -- FILENAME

These primitives can be used to define some useful auxiliary
relations for a given commit c, artifact a and developer d:

• pastChanges(c, a) = {c′|c′ ∈ before(c), a ∈ changes(c′)}.
For example, pastChanges(c6, f1) = {c1, c3, c4, c5}.

• pastChangesByAuthor(c, a, d) = {c′|c′ ∈ before(c), a ∈
changes(c′), d = author(c′)}.
For example, pastChangesByAuthor(c6, f1, d3) = {c3}.

• futureChangesByAuthor(c, a, d) = {c′|c′ ∈ after(c), a ∈
changes(c′), d = author(c′)}.
For example, futureChangesByAuthor(c6, f1, d1) = {c8}.

• mostRecent(c, a, d) is the minimum distance between c and
any commit in pastChanges(c, a) which is committed by
developer d. For example, mostRecent(c8, f1, d1) = 2, be-
cause the most recent change to f1 by d1 was made at c5,
which is 2 commits ago in the change history of f1 at that
point. If the given developer has not modified the given
artifact at all in its history, then the result is∞. For example,
mostRecent(c8, f4, d2) =∞.

• leastRecent(c, a, d) is the maximum distance between c and
any commit in pastChanges(c, a) which is committed by
developer d. For example, leastRecent(c8, f1, d1) = 5,
because the least recent change to f1 by d1 was made at
commit c1, which is 5 hops away in the change history of
f1. If the given developer has not modified the given arti-
fact at all in its history, then the result is 0. For example,
leastRecent(c8, f4, d2) = 0.

Definition 1. Relative Contribution

contribution(c, a, d) =
| pastChangesByAuthor(c, a, d)|

| pastChanges(c, a)|

For example, contribution(c6, f1, d1) = 3/4 = 0.75. The range
of relative contribution is 0 to 1, where 0 implies the developer
has never touched the artifact, while 1 implies that all previous
modifications to the artifact were made by this developer alone.

Definition 2. Recency

recency(c, a, d) =
1

mostRecent(c, a, d)

For example, recency(c6, f1, d3) = 1/3 = 0.33. The range of
recency is 0 to 1, where 0 implies that the developer has never
touched the artifact, while 1 implies that the most recent modifica-
tion to this artifact was committed by the this developer. Between
0 and 1, a high value of recency indicates that the developer was
involved in one of the last few changes to the artifact.

Definition 3. Longevity

longevity(c, a, d) =
leastRecent(c, a, d)

| pastChanges(c, a)|

For example, longevity(c6, f1, d3) = 3/4 = 0.75. The range of
longevity is 0 to 1, where 0 implies that the developer has never
touched the artifact, while 1 implies that the first ever change-set
involving the artifact was made by this developer. Between 0 and 1,
a high value of longevity indicates that the developer was involved
in the initial contributions to this artifact.

Definition 4. Code Ownership

ownership(c, a, d) =
ownedLines(c, a, d)

totalLines(c, a)

For example, if the file f1 contained 21 lines at the state just before
commit c6, and 14 of these lines were authored by developer d1,
then ownership(c6, f1, d1) = 14/21 = 0.67. The range of code
ownership is 0 to 1, where 0 implies that none of the lines of code
that comprise the source code artifact at this state were authored
by this developer, while 1 implies that all the lines of code were
authored by this developer. Note that it is possible for a devel-
oper to have an ownership of 0 while having non-zero values for
contribution, recency and longevity, which would occur if all the
lines of code authored by the developer were overwritten by other
contributors subsequently.

The four code metrics of ownership, contribution, recency and
longevity have been defined at a per-commit, per-developer, per-
artifact level. However, when deciding whether or not a change-
set is relevant to a given developer, we need to aggregate these
metrics over all artifacts that have been modified in the change-
set. To prevent missing out on important change notifications, we
aggregate these metrics in such a way that will cause a notification
to be deemed relevant even if one of the artifacts changed were rel-
evant to the developer. As the numeric equivalent of the boolean or
operation is the max function, the aggregation is done as follows:

CONTRIBUTION(c, d) = max
a∈changes(c)

contribution(c, a, d)

RECENCY(c, d) = max
a∈changes(c)

recency(c, a, d)

LONGEVITY(c, d) = max
a∈changes(c)

longevity(c, a, d)

OWNERSHIP(c, d) = max
a∈changes(c)

ownership(c, a, d)

Definition 5. Ideal Relevance
Finally, we define ideal relevance in formal terms – RELEVANT(c, d)

is true if and only if ∃a ∈ changes(c) such that both the following
relations hold:

1. pastChangesByAuthor(c, a, d) 6= ∅

2. futureChangesByAuthor(c, a, d) 6= ∅
In the example of Figure 1, the change-set c6 is ideally relevant

to developer d1, but not to d3. This is because c6 involves changes
to three files f1, f2 and f3, of which f1 and f3 have prior contribu-
tions by d1 who also revisits them later at c8. The developer d3 has
also modified both f1 and f2 in the past, but does not revisit them.
Developer d3 does modify f3 in the future, however that would be
the first experience with that file. Hence, this change-set does not
fit our definition of ideal relevance for d3.

Note that while the running example showed a simplified linear
time-line of a project’s change history, none of the above definitions
assume any linear timestamp-based ordering. All operations can
be performed on a non-linear change history (that may arise due
to branching and merging), which can be visualized as a directed
acyclic graph (DAG).



Projects Age Source Code Files # of # of # of Notifications
(months) Total Java (%) Commits Developers BLIND IDEAL TOUCH

(1) (2) (3) (4) (5) (6) (7) (8) (9)
astrid 45 3727 1259 (34%) 5112 19 56944 2686 10323 (18.13%)

atmosphere 45 331 307 (93%) 4121 78 135349 1998 14002 (10.35%)
basex 72 2123 1525 (72%) 7941 74 244926 5583 32315 (13.19%)

bigbluebutton 72 2808 787 (28%) 6248 71 143071 4472 15640 (10.93%)
carrot2 132 1932 642 (33%) 4377 7 14163 1669 3540 (24.99%)

ceylon-compiler 48 7197 4156 (58%) 7758 25 106688 10046 16958 (15.89%)
cgeo 31 1333 504 (38%) 5214 80 186935 14276 31240 (16.71%)

clojure 96 278 152 (55%) 2481 8 3573 859 1760 (49.26%)
dotCMS 22 13381 2485 (19%) 4886 34 59346 4164 12188 (20.54%)

druid 33 2703 2408 (89%) 3665 38 24552 713 5153 (20.99%)
eclim 96 1094 456 (42%) 4289 20 6481 77 195 (3.01%)

elasticsearch 48 3530 2957 (84%) 5685 36 50097 1426 5434 (10.85%)
erlide 84 2818 1220 (43%) 6335 17 41439 2929 7458 (18%)

FBReaderJ 72 1658 663 (40%) 5955 26 54550 2418 6007 (11.01%)
floodlight 25 827 692 (84%) 2112 50 37324 4546 11680 (31.29%)

gephi 59 4654 1288 (28%) 3737 53 54278 307 3414 (6.29%)
h2o 12 1433 399 (28%) 4090 34 49033 3772 9424 (19.22%)

hazelcast 60 1858 1643 (88%) 5039 50 69938 5694 15034 (21.5%)
hbase 84 2287 1885 (82%) 7552 42 143884 24066 49954 (34.72%)
hector 48 492 458 (93%) 2113 103 39241 1396 5379 (13.71%)

hibernate-orm 84 8129 6794 (84%) 4959 56 149460 4789 12528 (8.38%)
hibernate-search 72 1446 1311 (91%) 2805 17 20629 2825 4843 (23.48%)

jogl 132 2126 1174 (55%) 4883 41 85991 1408 11406 (13.26%)
k-9 60 1612 326 (20%) 4675 101 146620 9230 31999 (21.82%)

libgdx 47 5514 2041 (37%) 7221 180 289543 3229 15236 (5.26%)
mahout 72 1339 1194 (89%) 2808 23 32446 4362 9643 (29.72%)

mondrian 144 1435 902 (63%) 3356 64 86465 5221 24042 (27.81%)
mvel 84 482 445 (92%) 2821 24 16085 1750 5137 (31.94%)
netty 60 1040 983 (95%) 5311 38 89729 2409 5770 (6.43%)

nimbus 60 2741 841 (31%) 2449 16 20675 1227 2948 (14.26%)
nutz 60 1606 1232 (77%) 3363 36 36341 1770 5082 (13.98%)

orientdb 46 1699 1412 (83%) 5663 44 34648 2917 8940 (25.8%)
repose 29 2472 1297 (52%) 5105 43 58125 3392 8661 (14.9%)
rhino 180 573 352 (61%) 3010 33 39732 2926 15068 (37.92%)

rstudio 38 3110 1283 (41%) 6818 20 50194 3896 7737 (15.41%)
sensei 47 693 470 (68%) 2072 42 26443 1586 4069 (15.39%)
Spout 41 1201 1051 (88%) 5899 99 246853 12945 37890 (15.35%)

torquebox 57 4274 344 (8%) 4442 54 73107 5460 10696 (14.63%)
vraptor 58 805 682 (85%) 3343 91 70864 1794 8808 (12.43%)
zxing 72 3993 458 (11%) 2567 37 46974 961 4102 (8.73%)

Table 1: The set of 40 open-source projects analyzed.

3. DATA ANALYSIS
In this section, we describe our exploration of different tech-

niques to model code relevance for taming change notifications.
We first describe the data set of projects that were analyzed and
then describe the setup and results of different experiments that
were conducted for answering our four research questions.

3.1 Data Set
For our evaluation, we considered 40 medium-to-large size open-

source projects hosted on GitHub. The sample set is derived from a
list of top-starred Java projects on GitHub which contain between
2,000 and 8,000 commits each. A summary of the descriptive
statistics of these projects is presented in Table 1. The table con-
tains (1) the name of the project as it appears on GitHub, (2) the

age of the project in months, (3) the total number of files in its
latest state, (4) the number and fraction of files that contain Java
source code, (5) the total number of commits from the start of
the project and (6) the number of developers who have made at
least one commit. The projects we selected varied in different
dimensions. Projects range in development history from 1 year
(h2o) to 12 years (mondrian). The number of developers range
from 7 in carrot2 to 180 developers in libgdx, with an average of 48
developers across projects. Column (7) contains the sum of the total
volume of notifications that would have been sent to the entire team
using a blind strategy that notifies every team member of every
change. Note that a change notification is only sent to developers
other than the committer who have made at least one commit in the
past. Developers who join the project late thus receive notifications
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Figure 2: Precision, recall and F-Score of change-set relevance
prediction at file-level.

only from that point on. Column (8) contains the ideal volume of
notifications that should have been sent, by applying Definition 5
for classifying a notification as ideally relevant or not to the re-
ceiver. The values in column (9) will be addressed while answering
our first research question.

When comparing different techniques for reducing change noti-
fication clutter, we use standard measures such as precision, recall
and F-score, which are defined as follows:

Let NI be the set of all notifications that would have ideally been
relevant (by Definition 5) in a project (over all change-sets and all
developers). Let NS be the notifications that were actually found
relevant by our model. Then,

precision =
|Ns ∩NI |
|Ns|

recall =
|Ns ∩NI |
|NI |

F-score = 2× (precision× recall)

(precision + recall)

3.2 A Naive Approach

RQ1: How effective is a TOUCH-based subscription strategy
in reducing change notification clutter as compared to a blind
notification broadcast?

The TOUCH-based strategy is first evaluated at a file-level of
subscriptions. For each change-set committed to the repository,
we identify the files modified as part of that change-set. We then
identify the set of developers, who in the past (prior to this commit),
had modified any of these files. A notification would be sent to all
these developers (except the developer who committed this change-
set). The sum of all such notifications calculated for every commit
containing at least one changed file is reported in column (9) of
Table 1. The numbers in parenthesis is the fraction of the upper
bound (BLIND broadcast) of notifications.

Clearly, the TOUCH strategy alone results in a significant reduc-
tion of notification clutter, with the reductions ranging from 51%
in clojure to 97% in eclim. However, many of these notifications
may still be irrelevant to the receivers. The right-most column in
Figure 2 depicts the distribution of precision, recall and F-score
for the TOUCH strategy. Now, every notification that is ideally
relevant will be sent out by the TOUCH strategy. This is because
Definition 5 dictates that for a change to be ideally relevant to a
developer, a necessary condition is that pastChangesByAuthor
is non-empty for at least one of the changed artifacts, and this is

Coefficients Estimate Z-Score Pr (> |Z|)
Ownership 0.19 12.99 < 2× 10−16

Contribution 0.95 42.33 < 2× 10−16

Recency 1.56 124.46 < 2× 10−16

Longevity 0.03 2.77 0.0055
Odds Ratio

Ownership Contribution Recency Longevity
1.20 2.58 4.78 1.03

Table 2: Results of Binary Logistic Regression on code metrics
in predicting ideal relevance.

exactly the sufficient condition for sending out notifications in the
TOUCH strategy. Hence, the recall for the TOUCH strategy will
always be 100%. However, the average precision is about 35%,
indicating that even though the TOUCH strategy reduced the overall
notification clutter, it still sends out change notifications to devel-
opers who never revisit any of the changed artifacts in the future.
Hence, a more intelligent system is needed in order to determine the
right set of developers who are likely to find a change-set relevant
to them. This brings us to the next research question.

3.3 A Machine Learning Approach

RQ2: Is there a relationship between code metrics such
as ownership, contribution, recency and longevity, and our
notion of ideal relevance, and if so, how effective is a
HISTORY-based strategy in reducing the volume of change
notifications?

To answer this research question, we calculate the metrics own-
ership, contribution, recency, longevity and ideal relevance using
Definitions 1–5 for each change-set for each developer who would
have received a TOUCH-based notification. Our aim is to be able
to use the code metrics to predict whether or not a change-set is
ideally relevant.

We first determine the statistical significance of each of these
metrics in predicting ideal relevance. We then train three different
classifiers and evaluate their effectiveness in predicting whether a
developer would find a change-set relevant or not.

3.3.1 Statistical significance of code metrics in pre-
dicting ideal relevance

For the 40 projects, we had a total of 491,703 data points for our
analysis. The four code metrics are predictor variables while ideal
relevance is the outcome variable with binary values: 0 indicating
that the change-set is not relevant for the developer and 1 indicating
it is relevant. Since the outcome variable is binary (categorical) and
our predictor variables are continuous, we applied binary logistic
regression to evaluate the influence of the predictor variables on
the outcome.

Table 2 presents the results of binary logistic regression listing
the regression coefficients, estimates, Z-score and p-value. We find
three predictors (ownership, contribution and recency) significantly
influencing the outcome variable of ideal relevance with p-values
< 2 × 10−16, while longevity influences the outcome with a rela-
tively lesser significance. The odds ratio represents the magnitude
of influence. For example, for every unit change in recency, the
odds of the notification being relevant increases by 4.78. The odds
ratio suggests recency and contribution as major predictors of ideal
relevance followed by ownership and longevity.
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Figure 3: Precision and Recall for three classifiers using a file-
level HISTORY-based strategy.

We also performed the Wald Test [24] to determine how well
each predictor is significant. This test identifies how well the model
fits by including a predictor variable as opposed to a model which
excludes that predictor. We repeated the test for each predictor,
and for all the predictors the Wald Test resulted in a significant chi-
square with a p-value of less than 0.05.

3.3.2 Change relevance classification problem
We now evaluate different classification techniques for predict-

ing whether a change-set would be relevant to a given developer or
not based on temporal code metrics of the modified artifacts. Col-
lectively, this represents the HISTORY-based strategy for reducing
notification clutter.

Effectiveness of classification techniques: We used three clas-
sification techniques available in WEKA [13] for our study: (1)
Naive Bayes (a probabilistic classifier), (2) Conjunctive Rule (a
rule-based classifier) and (3) J48 (which is an implementation of
the C4.5 decision tree algorithm). We applied the standard 10-fold
cross-validation technique and Figure 3 shows the scatter plot of
precision and recall for different classification techniques. Each
point in the plot represents the average precision and recall value
aggregated over the 10-fold cross validation for each project. In-
tuitively, classification techniques that place majority of the data
points in the top-right quadrant (where precision and recall are
greater than 0.5) can be considered as performing well. Corre-
spondingly, J48 performs the best by predicting change-set rele-
vance with precision and recall greater than 0.5 for 37 projects.
Conjunctive Rule performs extremely well in few cases, where it
predicts with a recall of 1 and precision greater than 0.5, but gives
very low precision and recall for some other projects, and is hence
not consistent. The performance of Naive Bayes is between the
other two techniques, having at least either of precision or recall
greater than 0.5, across all projects.

Improvement over the TOUCH strategy: When compared to
the TOUCH strategy, the two HISTORY-based classifiers J48 and
Naive Bayes performed better in terms of precision and F-score
(as shown in the first three columns of Figure 2). The median
precision values observed for J48 and Naive Bayes were greater
than 70% which is a factor of two more than the precision observed
for TOUCH. The entire range of precision values was higher than
the corresponding precision values for TOUCH, indicating that J48
and Naive Bayes outperform TOUCH with respect to precision. Al-
though HISTORY-based classifiers report lower recall values when
compared to the TOUCH-based strategy (where recall is 100% by
definition), the J48 technique predicts with a recall greater than
50% in almost all cases. The Conjunctive Rule classifier is not
consistent and performs as bad as TOUCH in some projects. As
regards to the total volume of notifications, while the TOUCH strat-
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Figure 4: Performance of generalized (project-independent)
file-level HISTORY-based models.

Projects # of Notifications
BLIND IDEAL TOUCH

atmosphere 61951 284 2325 (3.75%)
druid 17277 308 1609 (9.31%)

floodlight 29092 1116 4020 (13.82%)
hazelcast 52759 2127 7457 (14.13%)

hector 25466 373 2018 (7.92%)
hibernate-orm 83118 1553 5348 (6.43%)

mahout 23388 1567 4349 (18.59%)
mvel 9505 96 1015 (10.68%)
netty 74222 1059 2772 (3.73%)

vraptor 35867 536 2869 (7.98%)

Table 3: Subset of Java projects analysed for RQ3.

egy resulted in a 82% reduction in clutter (compared to the BLIND
broadcast strategy), the HISTORY strategy reduced clutter by more
than 90% using either of J48 or Naive Bayes.

Generalization of the classification models: We further evalu-
ated if a single HISTORY-based model trained using aggregate data
from across projects can predict relevance for change-sets in other
projects individually. We present the results in comparison with
the TOUCH strategy in Figure 4. The vertical bars represent the
corresponding precision, recall and F-score for each classification
technique. It is evident that J48 outperforms the TOUCH strategy as
well as other HISTORY-based classification techniques, by predict-
ing relevance correctly with approximately 75% precision, recall
and F-score, on average.

3.4 Granularity of Changes

RQ3: Does the volume of change notifications reduce by
using a finer-granularity of changes to individual methods in
a source code file?

We now explore the effectiveness of the above techniques at the
method-level and compare it to the results at the file-level.

Data set and naive TOUCH strategy: We chose 10 projects
from our original data set 40 projects, which had a high (more than
80%) proportion of Java files. For each change-set, we identified
the set of changed methods by comparing the differences in the ab-
stract syntax trees of Java source files before and after the change.
This was implemented using the Eclipse Java Development Toolkit.
The summary statistics for these projects is shown in Table 3. A
comparison of Table 3 and corresponding rows of Table 1 make it
evident that there is a significant reduction in the notification vol-
ume (for BLIND as well as TOUCH) at the method-level. The BLIND
volume is lower than that at the file-level because not all changes
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Figure 5: Precision, recall and F-Score of change-set relevance
prediction at method-level.
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Figure 6: Performance of generalized (project-independent)
method-level HISTORY-based models.

include modifications to Java methods. But the reduction in the
notifications sent out by the TOUCH-based strategy is much more.
The difference between method-level and file-level effectiveness of
TOUCH can be realized by comparing the numbers in parenthesis,
which is the percentage of the BLIND notifications which were
actually sent out. The fraction is lesser in the method-level, because
developers are only subscribed to changes to individual methods
which they have touched, and not just all changes to the file in
which they have modified some method.

Improvements with the HISTORY strategy: We also calcu-
lated code metrics such as ownership, contribution, recency and
longevity for method-level changes. Note that while calculating
these metrics we only considered historical changes to a given method,
and hence all these values will be different for each change-set as
compared to the file-level. We then applied the three classification
techniques for the HISTORY-based approach, viz. Naive Bayes,
Conjunctive-Rule and J48. Figure 5 is a box plot of the precision,
recall and F-score across different classification techniques for the
10 projects. Among the classification techniques both J48 and
Naive Bayes performed equally well at the method-level granular-
ity. J48 performed well in terms of precision, while Naive Bayes
did well from a recall perspective. In contrast, Conjunctive Rule
spanned all ranges of precision and recall, proving that it was not
consistent at method-level granularity as well.

Generalization of the classification models: For the method-
level granularity, we also trained generalized project-independent
models using the three classifiers to see if the code metrics can
predict relevancy across projects. Figure 6 shows the results of
these models. The HISTORY-based techniques seem to perform
well when using a generalized method-level model as well.
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Figure 7: Precision and recall for developer-specific models for
196 developers.

3.5 Text-based Spam Filtering

RQ4: Does the addition of TEXT-based features from com-
mit messages improve the usefulness of code relevance mod-
els for reducing change notifications?

Our final exploration was to consider the problem of reducing
change notifications as a spam filtering problem, and build developer-
specific models of code relevance that use, in addition to HISTORY-
based metrics, TEXT-based features from commit messages that
may indicate items of interest to developers.

Data set and methodology: Since the TEXT-based strategy learns
words of relevance specific to a developer, this approach requires
building one model per developer. For this purpose, we require
enough data about a developer’s prior change history, with enough
examples of ideally relevant and non-relevant changes. Hence,
we curtailed our data set of the 40 open-source projects and built
models for only those developers who had at least 200 relevant
and non-relevant changes in their history. Only 196 of the 1,822
developers in our data set met this criteria.

To build a TEXT-based code relevance model, we extracted tex-
tual comments that are associated with each change-set (also known
as commit messages). These messages typically include terms that
refer to the module in which the change occurs or contains words
describing tasks or bugs that are addressed in the change. The
commit messages were split into a bag-of-words using WEKA’s
StringToVector filter, which also removes stop-words and stems
the resulting words to their root. The resulting bag-of-words formed
the set of input variables for the TEXT-based code relevance mod-
els.

In order to objectively understand the effect of incorporating text
in our modeling of code relevance, we trained two models per de-
veloper: one using only HISTORY-based metrics and one using both
HISTORY + TEXT features. Note that the models using only HIS-
TORY here are different from the per-project or project-independent
models presented in Section 3.3. When training developer-specific
models, we only calculate HISTORY metrics for that developer for
each change-set in the project that the developer is contributing to.
The evaluation of these models was done using the same ten-fold
cross-validation technique as used previously.

Results: Figure 7 shows the results of our developer-specific
models as scatter plots of precision and recall. As it is evident from
the figure, the augmented models that incorporate TEXT perform
slightly better (average precision and recall of 79.8% and 78.9%
respectively) than the purely HISTORY based models (average pre-
cision and recall of 73.8% and 73.1% respectively), indicating that
TEXT from commit messages can be useful to model code rele-
vance.



4. DISCUSSION
We now discuss the implications of the above results for devel-

oping NEEDFEED, a relevance-based change notification tool.
Best Classifier: There is no clear winner between the various

classification techniques (though J48 and Naive Bayes seem to pro-
vide more consistent results) but it is clear from the evaluation that
the HISTORY-based strategy is in general far better than the TOUCH
strategy in reducing notification clutter. Note that, from an appli-
cation point-of-view, the moderately low values of recall for the
HISTORY-based strategies are not completely detrimental because
a developer can still view change history of any artifact before
modifying it. However, this is time consuming and may result in a
loss of productivity, which is equivalent to that of sifting through
a large list of irrelevant notifications. Hence, NEEDFEED would
need to consider a trade-off between a large amount of notification
clutter containing surely irrelevant changes and the off-chance of
missing out on potentially relevant changes.

File-level vs. Method-level: Although it is clear that the volume
of change notification clutter reduces significantly when using a
finer granularity of individual methods, not all change-sets will
contain changes to source code. Even projects that are exclusively
written in one programming language contain certain configuration
files or other documents that are collaboratively developed and for
which a fine granularity may not be discernible.

Generalizability: From our study over the sample set of 40
projects, we found that a generalized model works as well as project-
specific models. This is an interesting property which will allow
new projects to leverage NEEDFEED without requiring a long change
history to bootstrap the relevance model.

Text Based Filtering: While the combined TEXT + HISTORY
approach seems to provide better results on average than using
only HISTORY metrics, there is a constraint that developer-specific
models can only be built when there is significant amount of change
history for the developer which can be used for training.

Prescribed Strategy: Overall we feel the best strategy is a hy-
brid one which can leverage data as it becomes available. For new
projects, the project-independent HISTORY-based model (which is
generic and learned from other projects) could suffice, but as the
project grows a project-specific model can be trained using its own
change history. Similarly, as individual developers increase their
participation, developer-specific models can be built for them in-
corporating TEXT from commit messages. In each case, if the files
modified in a change-set are of a type whose source can be parsed,
we can apply method-level history tracking. For other types of
content, the model can fall back on file-level granularity.

5. THREATS TO VALIDITY
In this section, we list the most important threats and limitations

of our empirical study.
Construct validity: We faced some minor issues while extract-

ing the required data from Git repositories for our study. For exam-
ple, developers who used different names or email addresses across
their commits would have been considered as distinct people and
hence distinct relevance values would have been calculated for each
of them. Also, we did not track renaming of artifacts and hence
such operations appear as a deletion of one artifact followed by the
creation of another. These issues would affect our precision and
recall but we expect such occurrences to be the exception rather
than the norm.

Internal validity: Our definition of ideal relevance suffers from
a horizon effect that would likely introduce biases in the preicision
and recall values reported in our experiments. This is because for

commits towards the end of the time-line there is no opportunity to
identify future code revisits by developers in order to classify them
as ideally relevant or not. Consider a notification about a change-
set ∆ that is sent to a developer d at time t1. If we were to train
or evaluate our model using historical data at some time t2 (where
t2 > t1) and if d has not modified any artifact in ∆ between t1 and
t2, then we will mark that change-set as ideally not relevant to d.
However, it may be possible that d is, in fact, responsible for the
artifacts changed in ∆, and that after a review of that change-set
d makes some modifications in the future at some point t3 (where
t3 > t2). Thus, our training may suffer and our evaluation may
report spurious false positives and true negatives. Note that merely
restricting our training and evaluation to a subset of commit history
before some mid-way point in time tm will not resolve this issue,
as this period may still include horizons for those artifacts that were
last modified only before tm. A possible solution may involve
carefully ignoring changes to a select subset of artifacts in every
change-set that are close to their own horizon. We leave the detailed
investigation of the horizon effect as future work.

External validity: Our study was conducted on a set of 40 open-
source projects hosted on GitHub. Although the model seems to
generalize over this set of projects, it may or may not perform as
well on different kinds of projects, such as small private projects in
a tightly controlled commercial setting having a team size of just
a handful of developers. Such projects can hence use the TOUCH-
based strategy during their initial stages and migrate to a project-
specific model as the project evolves.

6. RELATED WORK
There is a large amount of existing literature that has studied the

problems that arise due to the overheads of collaboration in soft-
ware development as the team size increases [3, 7], which impedes
development [5, 9, 15] and increases defects [8, 18, 21]. The impact
of code metrics such as ownership and contribution have also been
shown to be useful in studies of software quality [2, 22].

A number of prior research work has tackled issues similar to the
ones we address in this paper, specifically that of (1) information
clutter in a developer’s workspace, (2) code change notifications
in particular and (3) other methods of keeping developers updated
about their teammate’s activities. We address each of these cate-
gories of related work and clarify how our work is different.

Information Clutter and Notification Spam: Mukherjee and
Garg [20] conducted a study to measure information clutter arising
from notifications about changes to work-items in Rational Team
Concert. Their tool, TWINY, uses machine learning techniques on
historical data about work items mined from the software reposi-
tory to predict whether a notification will prompt a response from
its recipient. Similarly, Ibrahim et al. [17] developed personalized
models to automatically identify discussion threads that a developer
would contribute to based on their previous contribution behavior.
They built a composite model leveraging both Naive Bayesian and
Decision Tree classifiers. Our work is partially inspired by these
approaches but is different in scope and methodology. We focus
solely on clutter arising from source code check-in notifications,
and hence leverage different kinds of temporal metrics as well as
different granularities of changes.

Relevancy in source code changes: Holmes and Walker [16]
address the problem of modeling relevancy in code changes in their
tool – YooHoo. However, this tool is mainly targeted at external
changes occurring in components or libraries on which a devel-
oper’s own work depends on. Due to this different scope, their tool
looks for events such as a change in the API of imported libraries
or the creation of a new repository branch (possibly indicating a



new release) or change in JavaDoc (possibly a change in expected
behavior), and filters out minor changes to the implementation of
such external components. Our study is restricted to the problem
of determining relevance of changes to artifacts in a given project
which are worked on by multiple developers, and hence we model
code relevance differently.

Change relevance has also been mentioned as a use case in Fritz’s
PhD thesis [10], in which he presented a Degree-of-Knowledge
(DOK) model for capturing a developer’s familiarity with source
code artifacts. Our work differs from this thesis in two major ways.
Firstly, the DOK model was trained with seven developers who
answered a questionnaire regarding their knowledge of source code
artifacts, and the application of this model for estimating relevance
of changes was evaluated by recommending a total of six bug re-
ports to three developers. Our training and evaluation are com-
pletely automated and use a much larger data set of 40 projects,
1, 822 developers and 491, 703 data points. Secondly, the vari-
ables used to model code relevance are different. The DOK model
uses two components: (1) a Degree-of-Authorship (DOA), which is
based on whether a developer was the first author of a file and on
the absolute number of changes delivered/accepted by them, and
(2) a Degree-of-Interest (DOI) which is calculated by monitoring
a developer’s activity within an IDE. Our HISTORY metrics are
similar to the DOA but are all continuous and normalized, and
we do not measure IDE activity at all and hence have no DOI
component, though it should be easy to incorporate this variable
if the data was available. In any case, Fritz reported that the DOI
variable was not significant during the training of the DOK model.

Conflict detection from concurrent modifications: A number
of tools have been developed to prevent conflicts arising from mul-
tiple developers modifying source code artifacts simultaneously.
These tools include CollabVS [14], Crystal [4], Palantir [23] and
Continuous Merging [12]. However, such tools prevent conflicts
that can possibly arise in the future by scanning yet-uncommitted
changes that are being authored in parallel by two or more develop-
ers. Also, these tools are usually restricted to determining conflicts
that can be automatically detected, such as those that break builds
or tests. The scope of our work is different, as code check-in noti-
fications potentially prevent inconsistencies that are authored by a
single developer, but which can be detected by another developer
who manually reviews the change. Also, check-in notifications
are fired only after the changes are fully committed to the shared
repository. Our work can thus be used in conjunction with the
aforementioned tools since the addressed problems are distinct.

7. FUTURE WORK
NEEDFEED is currently implemented as a notification filter at

two granularities: file-level and Java method-level. As discussed
previously, although a model based on fine-granularity is better at
reducing notification spam, it has to fall back to the file-level for
content-types which it cannot parse. NEEDFEED thus needs to be
extended with more front-ends to be effective for projects written
in other languages such as C++ or JavaScript.

Currently, NEEDFEED is only capable of classifying change-
sets as relevant or irrelevant to a developer in a binary fashion.
Our final aim is to provide a personalized change-notification feed,
which would contain, for each item, a description of why exactly
the change is relevant to a given developer. Changes that are not
deemed relevant may be presented in a separate, unobtrusive list,
which can be examined on-demand. A mock-up of such a person-
alized feed is shown in Figure 8. Our tool can be integrated with
other filters such as YooHoo [16] which consider different types of
change relevancy, thus providing an integrated notification stream.

Figure 8: A mock-up of a personalized change notification
stream powered by NEEDFEED.

We also envision other applications that can leverage the code
relevance models of NEEDFEED. For example, the workspace of a
developer in their IDE often contains a large number of files, usu-
ally everything contained by the project the developer is working
on. Simply locating relevant files to open can sometimes be a non-
trivial task. An alternate view of the workspace which first shows
relevant artifacts and optionally allows navigation of the remaining
files may be helpful in improving a developer’s productivity. Also,
as our models capture the likelihood that a developer may modify
an artifact in the future, another application that is conceivable is
forecasting, where project managers can make estimates about the
likely workloads of developers in the near future based on their
recent change history.

8. CONCLUSION
Software developers have consistently reported that the state-of-

the-art in collaborative development tools are inadequate in meet-
ing their information needs concerning changes committed by other
developers, due to a lack of relevance in the notification stream.

In this paper, we have described our exploration of various tech-
niques to model code relevance towards providing a personalized
change feed for every developer. Our experiments on historical
data of 40 open-source projects indicate that models that incorpo-
rate data mined from a project’s software repository are useful in
reducing notification clutter (by over 90% on average) with high
levels of precision and recall (over 75% each on average).

We believe that the inclusion of personalized change notifica-
tions in collaborative development tools can be very effective in im-
proving the productivity of software developers and hence has the
potential to positively impact the success of any software project as
a whole.
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