
A Study of External Community Contribution to
Open-Source Projects on GitHub

Rohan Padhye
IBM Research India

ropadhye@in.ibm.com

Senthil Mani
IBM Research India

sentmani@in.ibm.com

Vibha Singhal Sinha
IBM Research India

vibha.sinha@in.ibm.com

ABSTRACT
Open-source software projects are primarily driven by community
contribution. However, commit access to such projects’ software
repositories is often strictly controlled. These projects prefer to so-
licit external participation in the form of patches or pull requests.
In this paper, we analyze a set of 89 top-starred GitHub projects
and their forks in order to explore the nature and distribution of
such community contribution. We first classify commits (and de-
velopers) into three categories: CORE, EXTERNAL and MUTANT,
and study the relative sizes of each of these classes through a ring-
based visualization. We observe that projects written in mainstream
scripting languages such as JavaScript and Python tend to include
more external participation than projects written in upcoming lan-
guages such as Scala. We also visualize the geographic spread of
these communities via geocoding. Finally, we classify the types
of pull requests submitted based on their labels and observe that
bug fixes are more likely to be merged into the main projects as
compared to feature enhancements.

Categories and Subject Descriptors
K.4.3 [Computers and Society]: Organizational Impacts—Computer-
supported cooperative work; D.2.8 [Software Engineering]: Dis-
tribution, Maintenance and Enhancement—Version control

General Terms
Human Factors, Languages

Keywords
Open-source software, core committers, external contribution, pull
requests, community participation, mining software repositories

1. INTRODUCTION
The success of open-source software projects depends heavily

on active community participation in all its phases including plan-
ning, development, maintenance and documentation. Participants
often collaborate using one or more shared software repositories for
storing and managing source code, documentation and bug reports.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

Most projects encourage any and all users to file a bug report
when they spot some unexpected behavior, and many projects even
maintain their documentation as public wikis. However, write ac-
cess to the project’s source code is almost always strictly controlled.
A chosen set of developers, often referred to as core committers,
have the ability to make changes to the project’s code-base and all
other community participation is solicited through distinct medi-
ums such as patches or pull requests. In fact, continued submission
of high-quality patches is an important requirement for an external
contributor to be promoted to the level of a core committer [7].

In this paper, we analyze a data set of 89 popular projects hosted
on GitHub and their 108,000+ forks [5] in order to study the levels
of participation from different communities of the root projects,
which we term as CORE, EXTERNAL or MUTANT. These categories
are defined as follows:

• A CORE committer is a developer who has write access to a
project’s repository, and all commits directly associated with
the main repository are considered CORE commits.

• An EXTERNAL commit is one which is incorporated into a
project indirectly through patches or pull requests that need
to be accepted by a CORE committer; the author of such a
commit is called an EXTERNAL committer.

• A MUTANT is a modification to the code-base of a project
which is not incorporated back into the main repository. This
may occur either if the change was rejected by CORE com-
mitters or if the author made this change for personal uses
only. Developers who have only made MUTANT changes be-
long to the MUTANT community.

Note that each of these categories are defined on a per-project
basis, so a CORE-committer in one project may be an EXTERNAL-
committer in another project. We formulate our study as a set of
four research questions:

• RQ1: What is the distribution of relative sizes of commu-
nities (CORE, EXTERNAL and MUTANT) in the root projects
considering (1) number of users in each community and (2)
number of commits contributed by each community?

• RQ2: Is the distribution of relative sizes of communities im-
pacted by the main programming or scripting language used
by the root project?

• RQ3: Are the communities that are contributing to these
open-source projects geographically diverse or concentrated?

• RQ4: What is the nature of external contribution (e.g. bug
fix, feature enhancement or documentation) and do the main-
tainers of root projects have a preference of either type in
deciding whether or not to incorporate such external contri-
bution or to reject it?

LocalKbranch

Forked PullKRequest
Merged

CoreKcommit

MutantKcommit

ExternalKcommit

PullKRequest
Rejected

ROOT
PROJECT

FORKEDKREPOSITORY

Figure 1: Simplified example time-line of a repository and its
fork showing classification of CORE, EXTERNAL and MUTANT
commits.

We first explain the fork-and-pull model of GitHub and how it is
critical in enabling this study in Section 2. We describe our analysis
of the data-set and address the four research questions in Section 3,
followed by a conclusion in Section 4.

2. THE FORK-AND-PULL MODEL
Decentralized version-control systems such as Git allow users

to clone entire repositories, giving every user write access to their
own local clones, and thus facilitate the management of commu-
nity driven participation [4]. In Git, commits are simply a set of
changes (deltas) applied on some state of the system, referred to
as the parent commit(s). This allows a very lightweight implemen-
tation of branching and merging. Another implication of such an
architecture is that commits made on one repository can be seam-
lessly transferred to another repository as long as there is a common
baseline (parents) between the two repositories. Developers can
push commits to a remote repository, if they have write access, or
ask the maintainers of a remote repository to pull in their commits.

GitHub [1] is a Web-based project-hosting service which is based
on Git. The platform allows users to leverage the decentralized fea-
tures of Git while maintaining a centrally hosted canonical reposi-
tory and provides other features such as an integrated issue manage-
ment system. A distinguishing feature of GitHub is the fork-and-
pull model, which implements the aforementioned mechanism for
seamlessly exchanging commits across clones of the same project.
All users, regardless of whether they have write access to a project,
can fork its repository with a single-click, just as if they were creat-
ing a lightweight branch. The fork is a remote-hosted clone of the
repository completely owned by such users and they can modify
its code and even add other users in order to collaboratively extend
the code-base. If the developers wish to contribute these extensions
back to the original project, they can open-up a pull request, which
is implemented simply as an item in the issue tracker. Thus, there is
a central platform for a discussion between the root project’s main-
tainers and the external contributors. This discussion can be used
as a code review and the external contributors may even be asked
to make further modifications (such as write the proper documen-
tation or test-cases to validate their code). Any such changes can
be appended to the same pull request easily. Finally, a pull-request
may be merged into the original project or be rejected and closed.

Figure 1 shows an example time-line of commits in a root project
and its fork. CORE-commits are those which are logged directly on
the root repository. EXTERNAL commits are all commits which are
logged on forks of the root project, but which flow into the root
repository through accepted pull requests. All commits made on
the forks which are not incorporated in the upstream root project
are classified as MUTANTs.

Our study of such communities is only possible using data from
a platform like GitHub in which all commit activity, including that

requests httpieredditdjango

Figure 2: Ring visualization for relative community sizes by
developer count for four Python projects.

on forks, can be easily traced. In traditional open-source devel-
opment with centralized version control systems such as CVS or
Subversion, external community contribution occurs through the
exchange of patches, which are often managed in distinct chan-
nels such as mailing lists, and which do not have associated change
history. Further, it is almost impossible to measure the activity of
developers who extend such projects’ source code for personal uses
only without submitting patches to the original repository.

3. DATA ANALYSIS
The data set [5] used for our study contains, among other things,

commit history and pull requests of 89 top-starred GitHub projects
written in different languages and their forks1.

Of the 108,629 forks in this data-set, only 18,343 had at least one
commit, indicating that a majority of the forks are just stubs. The
root projects and forks combined account for a total of 548,299
commits by 23,237 distinct users, which we analyzed and clas-
sified, with respect to each root project, as CORE, EXTERNAL or
MUTANT. Section 3.1 describes our ring-based visualization for
studying the relative sizes of these communities, while Section 3.2
analyzes the impact of programming language on these communi-
ties.

12,635 users (54.37%) had entered some location data in their
profiles. We resolved these arbitrary location strings to latitude and
longitude coordinates using the Google GeoCoding API [2], and
used the results to study the geographic distribution of different
communities for each project, which is presented in Section 3.3.

Of the 18,343 forks which had activity, 18,278 forks (99.65%)
had initiated at least one pull request. This shows that develop-
ers who make changes to forks of popular projects almost always
consider contributing their changes back to the original project, as
opposed to exclusively making custom changes for personal use.
However, only 6,952 of these forks (38%) had at least one of their
pull requests accepted. Section 3.4 investigates the merge ratios for
different types of pull requests.

3.1 Project Communities
For each root project, we developed a ring-based visualization

in order to compare the sizes of different communities as shown in
Figure 2. The area of the innermost circle represents the size of
the CORE committers, who have commit access to the root project,
the area of the middle ring corresponds to the size of the EXTER-
NAL committers, whose commits have been incorporated in the root
project via pull requests, and the outermost ring represents the MU-
TANT committers, who have extended forks of the root project but
whose work has not made it upstream. The diagrams have been
normalized such that the diameter of the outer ring is the same for
all projects, and hence the rings represent relative community sizes.

The figure shows rings for four projects written in Python. Inter-

1Although the original data-set lists 90 root projects, we found that
one project, xphere-forks/symfony, was a fork of another
root project in the list, and hence we excluded it from our study.

C C# C++ CSS Java JavaScript PHP Python R Ruby Scala

0

25

50

75

100

C E M C E M C E M C E M C E M C E M C E M C E M C E M C E M C E M

%
 U

s
e
rs

Figure 3: Distribution of relative community sizes – CORE (C), EXTERNAL (E) and MUTANT (M) – by number of developers, grouped
by language.

C C# C++ CSS Java JavaScript PHP Python R Ruby Scala

0

25

50

75

100

C E M C E M C E M C E M C E M C E M C E M C E M C E M C E M C E M

%
 C

o
m

m
it
s

Figure 4: Distribution of relative community sizes – CORE (C), EXTERNAL (E) and MUTANT (M) – by commit count, grouped by
language.

esting observations can be made from this visualization. For exam-
ple, httpie has roughly an equal number of CORE-COMMITTERS
as well as EXTERNAL contributors, and a small number of MUTANT-
COMMITTERS as well. The django community is made up pri-
marly of CORE committers, with some EXTERNAL participation
as well. On the other hand, the requests project has a much
larger community of EXTERNAL contributors compared to its CORE
base; in fact the relatively smaller size of the MUTANT community
indicates that almost all users who initiated pull requests had at
least one of them merged. The reddit project does not seem
to incorporate a lot of external contribution, having only one user
in that community, although many more have made extensions to
forks and hence lie in the MUTANT community. Similar visualiza-
tions may be studied for commit counts as well (instead of num-
ber of committers). The visualizations for the entire data-set of 89
projects (both by commits and by users) have been made available
on the Web2.

3.2 Programming Language
Figures 3 and 4 are box-plots of relative community sizes (sum-

ming up to 100%) for each project, grouped by language, for num-
ber of developers and commit counts respectively.

From Figure 3 we can see that different languages show different
characteristics with respect to relative community sizes. The sizes
of EXTERNAL communities for popular scripting languages such
as JavaScript, PHP, Python and Ruby are comparable to the sizes
of their CORE communities. Projects written in C# had the highest
median value of relative size of the EXTERNAL community. On
the other hand, all Scala projects had an unusually large proportion

2http://code.comprehend.in:8080/msr14

of CORE committers. Projects written in C and Java seem to have
larger MUTANT communities than EXTERNAL; perhaps the policies
for accepting pull requests may be more strict for such projects.

Figure 4 tells a more uniform story. Regardless of language,
the number of commits by CORE-COMMITTERS always dominated
the number of commits by any other community. This is intu-
itive as CORE-COMMITTERS are usually the only ones involved at
the beginning of projects (before they are frequently forked) and
they would naturally be more inclined to continue maintaining the
project even after EXTERNAL participation has started appearing.

3.3 Geographic Distribution
Figure 5 shows the geographic distribution of CORE committers

for the django project, which has been plotted using the Google
Maps API [3]. Each marker in the map is labeled with a count of the
number of users in that region. The exact locations of users within
that region can be examined in more detail by zooming-in. An in-
teractive demo of these maps for all projects and all communities
has also been made available on the Web2.

Table 1 lists some summary statistics derived from our study
of geographic distribution of communities. It was clear that over
all, the United States dominated the geographic composition of the
CORE (≥ 50% committers in 5 projects) and EXTERNAL (≥ 50%
in 6 projects) communities. No other country had more than even
20% of the CORE committer community for any project, though 10
countries had between 10 − 20% of the CORE community. Ger-
many is a distant but clear second in the top countries for both the
CORE as well as EXTERNAL communities. It appears that there is
more EXTERNAL participation from non-US countries as opposed
to CORE community membership.

Figure 5: Geographic spread of CORE-COMMITTERS for the
django project.

Table 1: Summary stats for geographic distribution of CORE
and EXTERNAL communities for the 89 root projects.

Community Members United States Others (# Projects)

Core

≥ 10% 81 projects Germany (5), UK (3),
Sweden (3), France (3),
Australia (2), China (2),
Switzerland (2), Brazil (1),
South Korea (1), Russia (1)

≥ 20% 51 projects (none)
≥ 50% 5 projects (none)

External

≥ 10% 72 projects Germany (10), UK (8),
Japan (4), France (4),
Switzerland (2), Nether-
lands (2), Canada (2), 11
other countries (1)

≥ 20% 44 projects Germany (3), Japan (2),
France (1), Canada (1), UK
(1), Belarus (1)

≥ 50% 6 projects (none)

3.4 Nature of Pull Requests
Of the 75,526 closed pull requests in the data-set, only 34,125

(45.18%) were merged into root projects. We wanted to explore
some of the factors that may impact whether or not a pull request
is accepted by maintainers of a root project.

We found that 7,529 closed pull requests in the data-set (about
10%) had labels associated with them. We analyzed these labels
and classified the pull requests as a bug fix, feature enhancement or
documentation contribution and observed the merge ratio for each
of these categories.

The 7,529 labelled pull requests accounted for a total of 274
distinct labels, which ranged from meaningful terms such as “fea-
ture” and “bug” to project-specific terminology such as “oracle”
and “v0.10”. We manually classified these labels into four tags –
Bug Fix, Enhancement, Documentation or Unknown. The number
of closed pull requests that we could successfully tag was 2,117.
Of these, 1,140 (53.85%) were merged into root projects.

Figure 6 is a bar chart showing the total number of closed pull
requests and the fraction of them that were merged, for different
categories. As the figure shows, 66.84% of pull requests tagged as
Bug Fix were successfully merged into root projects, while 46.97%
of Feature Enhancements were merged. Also, about 60% of pull
requests tagged Documentation were merged.

From this data, we may infer that core project maintainers are
more open to accept external contributions that can immediately
be seen to fix a known bug or those that update documentation-
only, rather than incorporate new functionality into their project.
However, the validity of this inference may be threatened by the

588

393

209
127

1320

620

0

500

1000

Bug Documentation Enhancement

All

Merged

Figure 6: Number of pull requests merged, classified by types
derived from labels.

fact that a relatively small proportion (about 10%) of pull requests
were actually labelled.

Gousios et al. [6] conducted a similar study on a much larger
data-set, and included an analysis of natural language comments,
from which they concluded that the reasons for closing a pull re-
quest without merging were more often than not of a non-technical
nature (e.g. duplicate, obsolete, not following standards, etc). Our
study explored a different aspect, that of the kind of pull requests
that are being merged or rejected.

4. CONCLUSION
We have leveraged the fork-and-pull model of GitHub to study

community contribution for 89 popular open-source projects. We
observed that a large number of developers, from diverse geographic
backgrounds, consider participating in community-driven develop-
ment of open-source projects, regardless of whether or not they
have write access to a project’s main repository. We also noticed
that not all such community contribution is incorporated back into
the original project. Core developers seem relatively open to accept
bug fixes and documentation changes from the external community,
but may be apprehensive about proposed feature enhancements.

5. REFERENCES
[1] GitHub. https://github.com. Accessed: Feb 2014.

[2] Google Geocoding API. https://developers.
google.com/maps/documentation/geocoding.
Accessed: Feb 2014.

[3] Google Maps API. https://developers.google.
com/maps/. Accessed: Feb 2014.

[4] B. de Alwis and J. Sillito. Why are software projects moving
from centralized to decentralized version control systems? In
Proceedings of the 2009 ICSE Workshop on Cooperative and
Human Aspects on Software Engineering, CHASE ’09, pages
36–39, Washington, DC, USA, 2009. IEEE Computer Society.

[5] G. Gousios. The ghtorrent dataset and tool suite. In Pro-
ceedings of the 10th Working Conference on Mining Software
Repositories, MSR’13, pages 233–236, 2013.

[6] G. Gousios, M. Pinzger, and A. van Deursen. An exploratory
study of the pull-based software development model. In Pro-
ceedings of the 36th International Conference on Software En-
gineering, ICSE ’14, 2014. To appear.

[7] V. S. Sinha, S. Mani, and S. Sinha. Entering the circle of trust:
Developer initiation as committers in open-source projects. In
Proceedings of the 8th Working Conference on Mining Soft-
ware Repositories, MSR ’11, pages 133–142, New York, NY,
USA, 2011. ACM.

