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Abstract—Performance issues in software-defined network
(SDN) controllers can have serious impacts on the performance
and availability of networks. In this paper, we consider a
special class of SDN vulnerabilities called stateful performance
issues (SPIs), where a sequence of initial input messages drives
the controller into a state such that its performance degrades
pathologically when processing subsequent messages. Uncovering
SPIs in large complex software such as the widely used ONOS
SDN controller is challenging because of the large state space of
input sequences and the complex software architecture of inter-
dependent network services. We present SPIDER, a practical
fuzzing framework for identifying SPIs in this setting. The key
contribution in our work is to leverage the event-driven modular
software architecture of the SDN controller to (a) separately
target each network service for SPIs and (b) use static analysis to
identify all services whose event handlers can affect the state of
the target service directly or indirectly. SPIDER implements this
novel dependency-aware modular performance fuzzing approach
for 157 network services in ONOS and successfully identifies 10
new performance issues. We present an evaluation of SPIDER
against prior work, a sensitivity analysis of design decisions, and
case studies of two uncovered SPIs.

Index Terms—Stateful Performance Issue, Software-Defined
Network, Fuzzing

I. INTRODUCTION

Software-defined networking is increasingly adopted in wide-
area, data center, and enterprise networks [1]. In contrast to
traditional networks where routers and switches run both the
routing (i.e., control plane) and forwarding (i.e., data plane),
SDN logically decouples the control and data plane tasks. To
this end, SDN introduces a controller (e.g., ONOS [2]) that
communicates with network devices (routers and switches)
through a configuration protocol (e.g., OpenFlow [3]).

The SDN controller performs its tasks based on an internal
state that it maintains; this state is updated based on messages
received from network hosts and switches and eventually used
to configure the entire network. Given the critical role that the
SDN controller plays, vulnerabilities in the controller can lead
to undesirable outcomes impacting the overall performance,
security, and availability of the network [4], [5], [6].

However, finding vulnerabilities in the SDN controller is
not trivial. For example, Open Network Operating System
(ONOS) is a leading open-source SDN controller used by
many large network providers such as Comcast and AT&T [2].
ONOS contains 150+ network services that communicate with
each other asynchronously. Researchers have developed several

specialized analyses to identify vulnerabilities such as memory-
safety issues, protocol race conditions, and configuration issues
in SDN controllers such as ONOS [7], [8], [9], [10].

In this paper, we consider a new class of vulnerabilities in
ONOS, which we call stateful performance issues (SPIs). First,
SPIs are performance issues that lead to excessive resource
consumption when processing inputs (i.e., OpenFlow messages).
Such issues in an SDN controller can severely compromise the
network’s availability. SPIs can only be triggered after the SDN
controller has reached a specific internal state while processing
other messages.

Identifying SPIs is challenging because it involves finding a
sequence of messages that first puts the SDN controller in a
vulnerable state and then triggers a costly operation. At a high
level, this is a challenging search-space exploration problem due
to a combination of algorithmic and system factors. First, we
need to consider a large input search space of long sequences
of OpenFlow messages of interest. The second issue is the
large code base and non-trivial software architecture: ONOS
has tens of thousands of lines of code comprising hundreds of
network services with complex dependencies between them.
The third challenge stems from the semantics of SPIs: we
need to capture the dependencies between inputs and internal
states and identify which state-input combinations induce high
resource consumption.

We present SPIDER, a system for identifying SPIs in the
ONOS SDN controller. At its core, SPIDER uses performance
fuzzing [11], [12] to automatically generate inputs that max-
imize execution cost. SPIDER addresses the aforementioned
challenges by implementing a novel dependency-aware modu-
lar performance fuzzing framework.

Our key observation is that ONOS uses an event-based modu-
lar software architecture, where network services communicate
with each other using asynchronous events. Events are first
triggered by incoming OpenFlow messages. Network services
subscribe to one or more event types; their event handlers can
update their internal state and/or fire other events.

SPIDER generates sequences of internal events to trigger an
SPI; that is, where the last event in the sequence exacerbates
performance in some service S. Our key insight in making this
scalable is that the only events relevant to such an SPI are those
whose processing may directly or indirectly affect the internal
state of S. SPIDER leverages this insight in the following way.
First, we focus on analyzing one service at a time with the
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goal of triggering an SPI in just that service. Second, when
targeting a service S, we use static analysis to identify inter-
service dependencies. Finally, our performance fuzzer uses
the dependency information to generate event sequences that
only contain events that may affect the state of S. Such a
dependency-aware modular analysis allows SPIDER to reduce
the search space without sacrificing fidelity.

For event generation, we borrow the idea from Zest [13], uti-
lizing type-specific generator functions to represent and mutate
well-formed inputs. For most event types, these generators can
be synthesized automatically from type definitions. However,
for approximately 10% of event types critical to many services,
we use handcrafted generators to enhance fidelity.

We use SPIDER to analyze all 157 services in the ONOS
SDN controller. SPIDER flags 11 potential SPIs, of which 10
are true positives and 9 depend on complex state interactions.
We classify these issues based on the capabilities/scenarios
required for triggering them and on their impact. The most
serious identified vulnerabilities include (a) a malicious host
can degrade the SDN controller’s performance by cumulatively
increasing the cost of processing an OpenFlow message in an
unbounded way, and (b) a vulnerability in the topology service
leads to worst-case exponential performance, which can be
triggered by a compromised network switch. Our experiment
also shows that the SPI enables an attacker to reduce the
throughput of the controller down to 1Mb/s after sending 4000
spoofed ARP packets at low frequency (10 pkts/s) while only
controlling one vulnerable host in the network.

We evaluate our design decisions by comparing SPIDER with
three baseline implementations, including a monolithic SDN
fuzzer (Delta [10]), a variant of SPIDER without dependency
information (FULL), and a variant of SPIDER that analyzes
services in isolation (SINGLE). We run separate fuzzing
campaigns for all three variants of SPIDER for each of the
157 services, fixing the budget in terms of fuzzing time and
with repetitions (∼1.6 CPU years). Compared to SPIDER’s 10
true positives, FULL identifies only 1, and SINGLE identifies
2; Delta triggers 3 issues, though isolating the inputs is non-
trivial. Our results indicate that SPIDER is uniquely effective
in identifying stateful performance issues in ONOS.

To summarize, this paper makes the following contributions:
• We identify a new class of SDN vulnerabilities called stateful

performance issues (SPIs).
• We propose SPIDER, a novel dependency-aware modular

performance fuzzing technique for identifying SPIs in an
event-based software architecture.

• We use SPIDER to implement fuzzers for 157 services in
the ONOS SDN controller.

• We identify 10 unique performance issues in ONOS and
provide detailed case studies for two of the SPIs.

• We present a thorough evaluation and compare SPIDER with
three baseline implementations.

II. BACKGROUND AND PROBLEM DEFINITION

In software-defined networks (SDNs), the SDN controller,
a central node, governs routers and switches using control

1 public class ARPService {
2 private Map<IpAddress,MacAddress> addressMap;
3 private Map<IpAddress,MacAddress> getAddressMap(){
4 // Generate a shallow copy of addressMap
5 // by iterating over each entry in the map.
6 Map<IpAddress,MacAddress> copy = new HashMap<>();
7 for (Map.Entry entry: addressMap.entrySet()) {
8 copy.put(entry.getKey(), entry.getValue());
9 }

10 return copy;
11 }
12 public void add(IpAddress ip, MacAddress mac) {
13 addressMap.put(ip, mac);
14 }
15 public MacAddress lookup(IpAddress ip) {
16 return getAddressMap().get(ip);
17 }
18 public void packetHandler(OFPacketIn packetIn) {
19 Ethernet payload = packetIn.getPayload();
20 if (payload instanceof ARP) {
21 ARP arp = (ARP) payload;
22 if (arp.opCode == 0x1 || arp.opCode == 0x2) {
23 if (lookup(arp.ip) == null) {
24 this.add(arp.ip, arp.mac);
25 } } } } }

Fig. 1: Simplified view of ARPService in ONOS, illus-
trating a stateful performance issue. The lookup function
triggered by OFPacketIn, performs an O(n) operation
w.r.t. the size of addressMap.

messages. These devices handle data packets within the network.
ONOS [2], a popular open-source Java-based SDN controller,
processes input messages from routers and switches and
produces corresponding output messages or actions.

ONOS consists of a list of services. Each service performs
specific network functions, such as processing LLDP packets,
and can be dynamically loaded and unloaded. Services register
event handlers, maintain local state, and alter states upon event
processing. When a service state changes, it may generate
and dispatch events delivered to other subscriber services.
For example, the LLDP service processes LLDP packets
and dispatches topology events if a device is connected or
disconnected. Similarly, the Flow service implements logic
related to flow rules, listens to the topology events, and updates
its internal state.

In this paper, we focus on stateful performance issues
(SPIs) in these services. Such issues can be a serious concern
for critical infrastructures since they can introduce Denial
of Service [14], [15], [16] or induce subtle tail latency [17].
Triggering an SPI involves two phases: First, a sequence of
inputs drives the system to a vulnerable state. Then, a specific
input consumes an excessive amount of compute resources.

SPIs are different from two classical types of potential
vulnerabilities explored in the literature. First, in contrast
to stateless performance issues, where a single input leads
to an amplified response (e.g., [18], [19]), stateful issues
entail a complex sequence of events. Second, in contrast to
stateful security issues related to protocol state [20], [21],
[22], SPIs target the state of internal data structures in the
ONOS. Although SPIs have been studied in other settings (e.g.,
databases [23]), to the best of our knowledge, this has not been
explored in the context of SDN controllers.

SPIs are difficult to catch with traditional pre-deployment
software testing or in runtime system profiling. First, the issue
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Fig. 2: A high-level overview of SPIDER.

may not be revealed in the profiling data from normal runs,
as the system may not reach a vulnerable state. Second, a
misconfiguration (or attack) can slowly build the state over
time (e.g., by infrequently adding ARP records in the example
above), and remain undetected until the final trigger.

Illustrative example. Figure 1 presents a real issue we
discovered in the ONOS ARPService. The service processes
OFPacketIn events with ARP payloads and stores the
mapping between IP and MAC addresses. packetHandler
is an event handler which processes all OFPacketIn events
corresponding to OpenFlow packets. The OFPacketIn event
may cause the service to first look up ARP records (Line 23)
and add a record to the addressMap if the record is missing
(Line 24). Unfortunately, the lookup function has a subtle
performance issue. lookup calls getAddressMap() to
get a shallow copy of the addressMap instead of querying
addressMap directly (Line 7). This leads to O(n) operation
with respect to the size of addressMap each time lookup
is called. Note that OFPacketIn events can be triggered by
data-plane ARP packets; e.g., a misconfigured or malicious host
can send spoofed ARP packets to increase the addressMap
size n, and each message will subsequently trigger an O(n)
computation in terms of its size.

III. SOLUTION OVERVIEW

We adopt a fuzzing-based workflow to address our problem.
Fuzz testing [24], [25], [26], [27] is a randomized input
generation technique that effectively finds software bugs and
security vulnerabilities in large and complex systems. However,
we cannot apply existing fuzzing techniques directly. We start
by describing the design space for fuzzing and argue why
strawman solutions do not work. Then, we describe our design
choices to make this problem tractable. We then present our
end-to-end workflow, shown in Figure 2.

Design space and challenges: At a high level, any fuzzing
workflow entails the following choices that impose different
trade-offs between fidelity, scalability, and manual effort:
• Granularity of code access: One extreme is “black-box”

fuzzing [24] with access only to the input/output of the
system under test. At the other extreme, we have “white-box”
fuzzing [28], which inspects source code to analyze state
and execution paths. Black-box approaches scale well but
are imprecise, while white-box approaches are precise but
do not scale to a complex codebase. A middle ground is
“grey-box” [25] fuzzing (e.g., AFL [29] and libFuzzer [30]),

which uses lightweight instrumentation to get feedback from
the test execution to guide input generation.

• Granularity of inputs: Fuzzers can generate inputs in different
representations, which entails a trade-off between the quality
and the amount of domain knowledge that must be captured.
In the simplest case, we send a raw bitstream. At the other
extreme, we can directly generate internal data structures for
classes. There are also intermediate options; e.g., sending
semantic-aware OpenFlow messages.

• Granularity of system-under-test: At one end, we can
consider a monolithic view of the entire system, but this
is also the least scalable. Alternatively, we can analyze
individual classes, but we may miss out on vulnerabilities
triggered by inter-class dependencies.
A strawman workflow is to use black-box SDN fuzzers like

Delta [10] to generate OpenFlow message inputs to ONOS and
check if some message(s) cause performance issues. However,
given the large input space, this approach does not work well,
and most inputs are not relevant for stateful scenarios. Consider
Figure 1; the function add is called if and only if an OpenFlow
message is received by ONOS and the packet contains an ARP
payload with the operation code 0x1 or 0x2 (Lines 19–22).
Indeed, we tried using Delta to randomly sample ten thousand
OpenFlow messages. Of these, Delta produced 1140 OpenFlow
messages with ARP payloads. Only 13/1140 packets trigger
the add method and increase the size of addressMap. To
increase the execution cost of the ARPService, the fuzzer
needs to generate more than 900 OpenFlow messages with
valid ARP payloads.

Design choice 1: Performance-oriented grey-box fuzzing.
SPIs require us to generate a sequence of relevant messages.
The search space of individual messages alone is large, and
considering a sequence further increases the search space.
Thus, black-box fuzzers are not directly applicable. Grey-box
performance fuzzers, such as SlowFuzz [12] or PerfFuzz [11],
are a more promising starting point to tame large search spaces
by evolving inputs via feedback from program executions.
However, the complexity and semantics of ONOS pose key
challenges that we need to tackle.

Design Choice 2: Event sequences as inputs. Having chosen
a grey-box workflow, we next consider the input granularity. A
naive solution is to use a raw bitstream, but this lacks protocol
semantics, causing most inputs to be dismissed as garbage.
Alternatively, using OpenFlow messages and relying on the
controller to convert them into internal states for each service
also proves impractical, as the space of possible messages is too
large. To address these issues, we leverage a domain-specific
insight. As mentioned in §II, ONOS uses an event-based
architecture where incoming OpenFlow messages trigger new
events. SPIs occur when a service S reaches an internal state
that makes handling an event costly, with the state depending
on all previously handled events. This allows us to make the
problem more tractable by searching for a sequence of events
instead of OpenFlow messages; i.e., we search for a sequence
of events σ = e1, e2, . . . , eN such that the processing time of
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event eN exceeds a predefined threshold.
Design Choice 3: Dependency-aware modular analysis. With
an event-based fuzzing workflow, we see an opportunity to
improve the scalability of our analysis without compromising
its fidelity. As mentioned in §II, the controller is composed
of services that handle specific event types. If a sequence of
events σ = e1, e2, . . . , eN triggers a performance issue in a
service S that handles the event eN , we only need to search
over prefixes e1, e2, . . . , eN−1 that directly or indirectly affect
S. Thus, we can reduce the search space by focusing on each
service S individually, generating events handled by S or by any
service interacting with S that impacts its state. This modular
analysis is feasible due to our choice of a grey-box, event-driven
workflow; a black-box approach or using packet/OpenFlow
messages as inputs would require a monolithic analysis of the
controller. We define a service as analyzable if it registers at
least one type of event. Therefore, we reformulate our problem
to take as input a list of services to be analyzed, selected from
the set of analyzable services, instead of analyzing the entire
controller code at once.
Overview: Combining these design choices above, we have
the following end-to-end workflow, as depicted in Figure 2. For
each service to be analyzed, we first compute its dependency set
using static analysis. Then, for each service and its dependency,
SPIDER uses event generators and performance fuzzing to
generate event sequences of interest that can trigger potential
SPIs. Finally, we validate these vulnerabilities by reconstructing
OpenFlow message sequences that will trigger the fuzzer-
identified event sequences. Note that these design choices
naturally dovetail into each other to enable our analysis to
be tractable; e.g., the modular decomposition would not be
possible without a grey-box event-based workflow. To realize
this solution in practice, we still need to address a number of
system design and implementation challenges that we address
in the following sections.

IV. DETAILED DESIGN

Next, we describe the detailed design of SPIDER.

A. Identifying Service Dependencies

A core benefit of SPIDER’s design decision to search over
event sequences is that it enables modular analysis instead of

a monolithic analysis. Specifically, we can separately analyze
each service in ONOS to uncover SPIs in that service.

Analyzing a service S involves searching for sequences
e1, e2, . . . , eN of some fixed length N such that S is an event
handler of eN . Since we are interested in event sequences
that trigger a performance issue when S is handling eN , we
only care about events e1, e2, . . . , eN−1 that can affect the
performance of the handler of eN . Note that the event sequence
includes events handled by some other services S′ such that
S′ affects the internal state of the service S. We call the set
of such services S′ as the service dependency set of S. But
how do we determine the service dependency set?

Observe that the state of S may be manipulated by another
service S′ that calls a function in S. Additionally, S may call
a function in S′′, query the state of S′′, and then update its
own internal state. Therefore, we would put S′ and S′′ in
the dependency set of S, and then we also have to consider
services that affect the states of S′ and S′′ transitively.

One way to compute the service dependency set is to include
all services that can reach the analyzed service through function
calls or be reached by it. Figure 3 presents a simplified call
graph for a subset of services. Each edge represents a function
call pointing from the callee to the caller. In this example, the
service dependency set of RoutingService based on this
call graph would include VbngService, HostService,
PacketSerivce, and DHCPService.

However, the call graph approach may include services that
do not affect the state of the analyzed service. For instance,
VbngService does not modify the state of HostService,
since it only calls a read-only function getHosts; therefore,
it cannot indirectly affect the state of RoutingService. We
want the dependency set to be as small as possible to reduce
the search space for analyzing a given service.

To this end, we use a refinement that reduces the search space
without sacrificing analysis fidelity. First, for each event handler,
we compute a set of read and a set of write objects accessed by
the handler. We use this set to exclude services that do not affect
the same state object of the analyzed service while processing
events. For example, the state of HostService is not
affected by VbngService and RoutingService because
getHosts only reads from the HostStore. Additionally,
generating events for PacketService will not affect the
state of HostService because the Device event handler
does not access the HostStore state object at all.

Formally, our algorithm for computing the dependency set
Dep of a service S is as follows:
1) Initialize a set R of state objects read by the event handlers

of the analyzed service S and initialize Dep to {S}.
2) For each service S′ that can reach the analyzed service S

through function calls or be reached by it:
a. Compute two sets, RS′ and WS′ , containing state ob-

jects read and written by its event handlers, respectively.
b. If WS′ ∩ R is not empty, update R ← R ∪ RS′ and

Dep ← Dep ∪ {S′}.
3) If the dependency set Dep is updated, go back to Step 2.
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1 class HostEvent {
2 enum Type {
3 HOST_ADDED, HOST_REMOVED
4 };
5 Host host;
6 Type type;
7 }
8 class Host {
9 String name;

10 public Driver(String name{
11 this.name = checkNotNull(name);
12 } }

Fig. 5: Simplified version of HostEvent.

With this optimization, the service dependency set of
RoutingService now only includes HostService and
DHCPService. The set excludes VbngService and Pack-
etService because the event handlers from them do not
write to any state objects read by the RoutingService.

As evidence of this optimization, Figure 4 plots a CDF of
the service dependency sets across the 157 services in ONOS.
A naive call graph-based approach would have included over
75 dependent services for ≈ 70% of the services. In contrast,
our state-dependency optimization results in a median of 4 and
a maximum of 15 services in the dependency set.

B. Event Generation

Recall that analyzing a service S for stateful performance
issues requires searching over event sequences corresponding
to events handled by any service in the service dependency of
S. We decide to use generator functions for randomly sampling
event objects. A generator for an event of type T is a function
Random → T , where Random is a source of randomness.
This approach has been successfully applied by property testing
tools such as Quickcheck [31], [32].

In ONOS, events consist of data structure with multiple
fields. For example, Figure 5 shows a simplified version of
HostEvent. The HostEvent contains two fields host
with type Host, and type with type Type. Host is a data
structure with one field name (type String). To randomly
sample a HostEvent, we must randomly generate its fields
recursively. So, we also need a generator for the type (Type),
Host, and the name (String). To generate all event types,
we need to be able to generate all fields recursively.

1 class Generator {
2 Object generate(Class type, Random rnd) {
3 if (type == Integer.class) {
4 return rnd.nextInt(); // random value
5 } else if (...) {
6 ... /* other primitive types */
7 } else { // object type
8 Constructor c = type.getConstructor();
9 Object o = c.newInstance();

10 for (Field field: o.getFields()) {
11 Object val = generate(field.getType(), rnd);
12 field.set(val); // random value
13 }
14 return o;
15 }}}

Fig. 6: A simple type-based object generator that samples
random Object instances given any type.

1 class HostEventGenerator {
2 List<Host> generatedHosts;
3 HostEvent generateHostEvent(Random rnd) {
4 Type type = rnd.choose(Type.values());
5 if (type == Type.HOST_ADDED) {
6 Host host = generateHost(rnd);
7 generatedHosts.add(host);
8 return new HostEvent(host, type);
9 } else if (type == Type.HOST_REMOVED) {

10 Host host = rnd.choose(generatedHosts);
11 generatedHosts.remove(host);
12 return new HostEvent(host, type);
13 }
14 }
15 Host generateHost(Random rnd) {
16 ... // type-based random sampling
17 } }

Fig. 7: Simplified version of HostEventGenerator,
which maintains inter-event constraints—hosts cannot be
removed unless they have been previously added.

By default, SPIDER provides a type-based event generator
that generates events purely based on the type of each field [31],
[33]. Figure 6 presents the pseudocode of a type-based object
generator. The generator generates objects recursively based
on the type of each field. The automated approach is crucial
to be able to quickly generate many types of events, but it
has some limitations. In particular, events or other contained
objects, when generated with unrestricted values for their fields,
may violate certain constraints that the controller expects to be
satisfied. Thus, the type-based event generator may generate
events that are invalid.

Broadly, we identify two types of validity constraints:
• Intra-event constraints: These specify the internal con-

straints in an event. For example, in Figure 5 the name
field of a host object should not be null; the constructor
enforces this by calling a helper function checkNotNull
which will raise an exception if name is null.

• Inter-event constraints: These are properties that must hold
across multiple events. There are two types of HostEvent,
a HOST_ADDED event is posted when a new host is attached
to the network, and a HOST_REMOVED event is posted when
a connected host disconnects from the network. An inter-
event constraint is that a HOST_REMOVED event is valid if
and only if the corresponding host has been added to the
network and has not been removed.
In general, automatically generating such constraint-aware
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data structures is hard [34]. While type-based event generators
can be used automatically for such events, they run the risk of
generating invalid events. That is, either (a) the service handlers
exit with an error message without exercising meaningful
behavior, or (b) the search for SPIs may result in false positives.

As a pragmatic compromise between manual effort and
coverage, we choose to manually implement generators for
only the most critical of events, and use automatic type-based
generation for the rest. We identify critical events by counting
the number of distinct services whose states are affected by the
event. Figure 8 shows that a small number of events affect the
state of most services. Therefore, we write manual constraint-
aware generators (similar to HostEventGenerator in
Figure 5) for the top 10 events.

C. Putting It Together

To generate event sequences for finding SPIs, we start by
identifying the service dependency set DepS for each service S
(§IV-A). Next, SPIDER determines the event types ES covering
all event handlers registered by the services in DepS . Using
event generators (§IV-B), SPIDER searches for event sequences
e1, . . . , eN , ensuring that each event’s type is in ES—i.e.,
each event is handled by at least one service in DepS . The
search runs for a time budget B to find sequences where
the performance cost of handling eN exceeds a threshold
tmax. Parameters N and B are determined based on available
compute resources (§VI). The threshold choice is discussed
later in our experiments.

SPIDER performs the search by combining ideas from
PerfFuzz [11], a mutation-based grey-box performance fuzzer,
and Zest [13], which applies mutation-based grey-box fuzzing
to domain-specific input structures using generator functions.

SPIDER’s algorithm for fuzzing a service S and its dependen-
cies DepS with relevant event types ES combines performance
and semantic fuzzing, as follows:
1) Initialize a set Q with a randomly generated event sequence

σ0 = e1, ..., eN , where the type of each event ei is chosen
randomly from ES , and the event is randomly sampled via
its corresponding event generator (§IV-B).

2) Initialize a map maxCounts, which tracks the maximum
execution cost observed at each program branch, by sending
the event sequence σ0 to ONOS and monitoring the
execution cost when processing eN .

3) Pick a random event sequence σ from Q and mutate it into
a new event sequence σ′ using the semantic fuzzing [13]
approach, as described above.

4) Send σ′ to the services in DepS and collect its execution
instruction trace when processing the last event in σ′.
a. If the total execution path length is greater than tmax,

then flag σ′ as a potential issue.
b. Otherwise, cumulate the element-wise execution cost

of each program branch when processing the last event,
and update the corresponding entry for each branch in
maxCounts if the value is greater.

c. If any item in maxCounts was updated, then add σ′

to Q. Otherwise, discard σ′.
d. If the time budget B has expired, then stop fuzzing.

Otherwise, go back to step 3.
Note that potential issues flagged by this process still require

validation. First, an event ei in the flagged event sequence might
be invalid if it violates intra-event or inter-event constraints
(§IV), resulting in a false positive. Second, finding a sequence
of valid events that trigger high execution costs does not
necessarily mean that the same effect can be caused by external
OpenFlow messages. Currently, we manually translate an event
sequence into an OpenFlow message sequence, and automating
this step is a natural direction for future work. We label an issue
as a true positive if we can (manually) trigger the performance
issue in a network emulation.

V. IMPLEMENTATION

Performance fuzzing and state reset. We implement the
performance fuzzer in Java and Kotlin [35] on top of the
JQF [36] framework, which we extend to support perfor-
mance fuzzing [11](§IV-C). SPIDER uses ASM [37] and
ByteBuddy [38] to instrument ONOS to collect the performance
costs of events. Performance fuzzing requires that the state
of the analyzed system can be reset easily across fuzzing
executions. A naive option for fuzzing is to launch a new
instance for each execution. However, starting an instance
of ONOS is slow (e.g., 30 seconds on a laptop with 6-
core and 32GB memory). Alternatively, reusing an instance
across fuzzing runs is not viable as the state is impacted by
previous events. We also considered resetting service state
by instantiating a new service object and discarding the old
one. However, services such as StorageService implement
distributed persistent storage. This is not only slow to launch
but also persists the state to a local file system and does not
actually reset state.

Our approach to enabling state reset is to leverage mock
services provided by developers for unit tests. For example,
the distributed store in the fuzzing harness can be replaced
with a mock in-memory store, whose state can be reset using
APIs like clear or reset. Although this prevents us from
identifying performance vulnerabilities in the distributed store
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Fig. 9: Distribution of the per-event execution cost in a
normal-workload emulation environment of ONOS (log-log
scale). We set the threshold at three standard deviations
higher than the mean normal operation cost.

itself, it allows us to analyze many services that rely on the
store instead.

Alerting threshold. Given a sequence of events generated by
SPIDER, we need to determine if the events trigger a potential
SPI. We use a data-driven threshold selection. First, we build
a simple emulation environment using Mininet [39] with 4
hosts and 2 switches. We use ping utility to generate data
plane packets and monitor execution costs of event handling in
ONOS using JVM bytecode instrumentation.1 As mentioned
previously, we replace the distributed storage with in-memory
storage to achieve an efficient state reset in ONOS. Note that
the implementation of in-memory storage is much simpler than
the distributed storage, and to avoid setting an unrealistic high
threshold, we disable the instrumentation of the distributed
storage in ONOS. We ran the emulation environment for 20
minutes, which resulted in 93,788 events being observed for
ONOS. Figure 9 shows the histogram of the per-event execution
cost for ONOS. We compare the execution cost of the last
event generated by SPIDER with the events generated in the
simulation environment using z-score where Z(x) = x−µ

σ (i.e.,
the number of standard deviations above the mean). We use
a threshold z-score of three 2: if Z(x) > 3, then we flag a
potential a SPI.3

Validation and strategy reconstruction. For each potential
vulnerability reported by SPIDER, we want to verify if it actu-
ally represents a true vulnerability in ONOS. Our insight here
is that events in the SDN controller provide useful information
about events in the network. For example, a DeviceEvent
represents that the status of a device is updated, which contains
the type of update and detailed information about the device.
Similarly, a Link event represents the link update. Given

1One potential concern is that the processing time may depend on the
specific deployment and topology size; i.e., is threshold based on a small
topology relevant. We believe that this baseline is still useful as it indicates
potential scalability bottlenecks inside the controller implementation.

2The three-sigma rule based on the empirical rule in statistics states that
for a normal distribution, approximately 99.7% of the data lies within three
standard deviations from the mean. Thus, any value with a z-score greater
than 3 is considered abnormal.

3The outliers in Figure 9 that have a cost higher than the threshold only
appear during initialization; these are not considered as performance issues.

a sequence of DeviceEvents and LinkEvents, we can
dynamically reconstruct the topology. With this insight, we
can provide hints for a reconstruction strategy, including
network topology information (i.e., hosts, switches, links) and
network actions such as OpenFlow messages (e.g., topology
and configuration updates). We replay this sequence in network
emulation using Mininet [39].

VI. EVALUATION

We evaluate SPIDER on ONOS v2.2.4 [2]. Our evaluation
is focused on answering the following research questions.

RQ1. Is SPIDER effective at identifying SPIs in ONOS?

RQ2. How does SPIDER compare to a traditional SDN fuzzer
in identifying SPIs?

RQ3. To what extent does the dependency-aware modular
fuzzing technique help in identifying SPIs?

For each service to be analyzed, we have two parameters
to scope the analysis: (1) time budget (B) to run the analysis
and (2) sequence length (N ) of events to explore. With longer
time and length, the fuzzer consumes more resources and has a
greater chance of identifying SPIs. However, longer sequence
lengths also increase the search space. We configure SPIDER
to find a sequence of events with lengths N=1, 100, 250, 500,
1000, and 2500.

For each N , we allocate a budget B of 1 hour to analyze each
service. The fuzzer also uses results from previous sequence
lengths as seeds, and the total fuzzing time of each service is
6 hours. We repeated each experiment 5 times, which led to a
total of 4740 CPU hours (197 CPU days) per configuration.
We conduct all of our experiments on Cloudlab VMs using
4 cores (2.4 GHz) and 4 GB memory for each service. The
fuzzer runs and reports the smallest N, where the z-score of
the cost of handling the last event is greater than 3, or NULL
if no such event was found as described in §V.

A. RQ1: SPI Detection with SPIDER

After fuzzing each of the 157 services with the above
parameters, SPIDER reported 11 potential issues, summarized
in Table I. We manually analyze these 11 reports and find that
10 are true positives (which we name V1–V10) while one is a
false positive (named F1). Out of the 10 true positives, 9 of
these are truly stateful performance issues; i.e., they require a
non-empty of sequence of events to set up a vulnerable state
before the issue can be triggered. Only V8 can be triggered
with a single event. We manually inspect F1 and identify
that it relies on an automatically synthesized type-based event
generator for ControlMessageEvent, which does not take
into account some constraints and produces an invalid event
(e.g. the maximum allowable size of a control-message list
is exceeded); therefore, the issue cannot be triggered using
OpenFlow messages. We also verify that all performance issues
can be triggered regardless of the implementation of the storage
layer in ONOS.
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TABLE I: Summary of performance issues identified by SPIDER and baselines in ONOS. Each row shows the affected
class, a description of the issue, the source of OpenFlow messages that can trigger the issue, the smallest empirical
sequence length to uncover the issue

ID Service Description Source Smallest SPIDER FULL SINGLE SDN-
Name N Fuzz

V1 Castor The execution cost of CastorArpService increases linearly
with respect to the number of OFPacketIn with ARP payload
received by the service.

host 2500 ✓ ✗ ✓ ✗

V2 Neighbor Res-
olution

The execution cost of NeighborResolutionManager in-
creases linearly with respect to the number of connect points in
the network.

switch 50 ✓ ✗ ✗ ✓

V3 Port Statistics The execution cost of PortStatisticsService
increases linearly with respect to the number of
OFPortStatisticsReply messages received by the
service.

switch 1000 ✓ ✗ ✗ ✓

V4 Graph Path
Search

The execution cost of AbstractGraphPathSearch service
increases exponentially with respect to the number of links in the
network.

switch 50 ✓ ✗ ✗ ✗

V5 My Tunnel
App

The execution cost of MyTunnelApp increases linearly with
respect to the number of hosts in the topology.

switch 50 ✓ ✗ ✗ ✓

V6 VPLS The execution cost of VplsManager increases linearly with
respect to the number of interfaces configured in the SDN
controller.

controller 50 ✓ ✗ ✗ ✗

V7 Links
Provider

The execution cost of NetworkConfigLinksProvider in-
creases linearly with respect to the number of port created for
each switch.

switch 50 ✓ ✗ ✗ ✗

V8 Rabbit MQ The MQEventHandler performs a costly computation while
processing IPv4 packets.

host 1 ✓ ✓ ✓ ✗

V9 Router Adver-
tisement

The execution cost of RouterAdvertisementManager in-
creases linearly with respect to the number of interfaces created
in the network.

switch 50 ✓ ✗ ✗ ✗

V10 Link Discov-
ery

The execution cost LinkDiscoveryProvider increases lin-
early with respect to the number of switches in the network.

switch 1000 ✓ ✗ ✗ ✗

F1 Control Plane
Manager

An invalid ControlMessageEvent causes high execution of
the ControlPlaneManager.

N/A N/A ✓ ✗ ✓ ✗

Validation/Replay. For each reported issue, we use Mininet
to manually reconstruct the issue. We successfully replicated
9 issues in the emulated network.4

Responsible disclosure. We have notified the ONOS devel-
opers and presented them with concrete end-to-end traces to
reproduce our reported issues.
Classification. We manually classify the 10 performance issues
along two dimensions: source of the triggering event and
algorithmic complexity. First, we classify issues based on
the types of sources that can generate key events to trigger
these issues: host, switch, controller. For example, any host
connected to the network can generate PacketIn events with
IPv4 payloads, so its source is classified to host. A PacketIn
event with LLDP payload can only be sent by switches, so its
source is classified as switch. Some events can only be triggered
by an SDN controller configuration update, and those events
will have controller as the source. Second, we qualify the
algorithmic complexity of the performance issue as a function
of the number of events in the sequence. Specifically, we
identify high constant, linear, and exponential patterns of per-
event execution time for the trigger event. Note that per-event

4We are not able to replicate V4 due to the another bug triggered by the
emulator (Case Study 2).

linear complexity translates to a cumulative performance cost
of O(n2) for n events.

Table I presents a comprehensive listing of all issues
discovered by SPIDER and baselines. Out of 10 true positives,
2 issues can be triggered from a malicious host, which is the
most serious case; 7 issues can be triggered from compromised
switches; 1 issue can only be triggered by ONOS itself. While
the latter is not a serious security risk, it may occur due to
accidental misconfigurations.

The non-stateful issue V8 causes ONOS to perform a high-
constant-cost execution; 8 issues cause ONOS to perform
a computation whose per-event cost increases linearly with
respect to the number of events generated; 1 issue (V4)
causes ONOS to perform a computation whose cost increases
exponentially with respect to the events or generated.

Case Study 1: Host-initiated stateful performance issue
via spoofed ARP packets (V1). This issue, in class Cas-
torArpManager, can be exploited by any malicious hosts
in the network. The root cause of the issue is depicted
(highly simplified) in Figure 1. The execution cost of the
ARP-related service increases as more ARP records are added
to an internal data structure. We manually reconstructed the
OpenFlow messages that triggered this issue. As a proof-of-
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Fig. 10: The throughput seen by benign hosts drops
significantly 300 seconds after the ARP spoofing attack
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Fig. 11: Execution time of AbstractGraphPathSearch
service increases exponentially with respect to the number
of paths created in the network.

concept, we use Mininet [39] to create a simple network with
three switches. Each switch connects to one host. We use
one host to generate spoofed ARP packets and monitor the
connectivity between the other two hosts. The malicious host
generates 10 spoofed ARP packets per second to avoid the
flooding attack.

We use iperf to measure the bandwidth between two benign
hosts in the network, with results shown in Figure 10. The
bandwidth started at 27 Gbits/s, but dropped significantly after
270 seconds. To disrupt the network, the attacker only needed
to create 3,000 fake ARP packets at a low frequency. This
wasn’t due to a data plane attack, as confirmed by a separate test
without CastorArpManager. The SPI increased ONOS’s
processing time for OpenFlow messages, affecting its through-
put. OpenFlow messages containing LLDP data checked link
liveness, but ONOS couldn’t process them quickly enough
during the attack, marking links as unavailable and impacting
network bandwidth.

Moreover, it is hard to fix the issue with easy configuration
patches or reboots. ONOS saves all ARP records in persistent
storage, and it does not provide an interface to remove a single
field unless the user removes the entire data store. In that case,
other configurations will also be removed.

Case Study 2: Exponential-time stateful performance issue
induced by redundant links (V4). SPIDER reports that
the execution cost of the AbstractGraphPathSearch
method increases exponentially with respect to the number of
links in the network, in particular when there are redundant
links between devices. This is incredibly subtle because the link
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Fig. 12: The z-score of the target services reported by
different fuzzers.

graph is actually a multi-graph, and the path search algorithm
degrades in the presence of multiple edges between the same
pair of nodes. SPIDER identifies this issue by generating a
topology with multiple redundant links.

In order to replay this issue, we used Mininet to generate
a simulation network with redundant links. Unfortunately, the
simulation environment triggers an unrelated bug in ONOS
which hangs up the controller completely and stops processing
any OpenFlow messages from the data plane.

However, we are still able to trigger the issue that SPIDER
discovered by implementing a standalone service that can send
messages to TopologyService. We use this service to
generate a topology containing 5 devices, and then slowly add
redundant links by sending appropriate messages. Figure 11
shows the performance of the TopologyService, which
uses AbstractGraphPathSearch to compute paths be-
tween nodes, with respect to the total number of links created in
the network. This subtle case of redundant links in a multi-graph
topology demonstrates that SPIDER can identify hard-to-detect
stateful performance issues.

B. RQ2: Compare to SDN Fuzzer
In order to answer RQ2, we use a packet fuzzer adopted from

Delta [10] to fuzz ONOS for 12 hours. Delta is a state-of-the-
art black box SDN fuzzer, which generates stateful OpenFlow
messages. Since this fuzzer does not use instrumentation, we
further instrument ONOS and measure the execution cost of
each event triggered by the SDN fuzzer.

Delta triggers over 2 million internal events in total and only
582 events whose z-scores are greater than 3. Except for the
events generated during the bootstrap stage of ONOS similar to
the simulation environment shown in Figure 9, Delta triggers 3
SPIs (V2, V3 and V5) but does not uncover any new SPIs not
already identified by SPIDER. Furthermore, Delta fails to detect
subtle issues that alter the topology. Note that Delta generates
OpenFlow messages continuously without resetting; therefore,
any state changes are unintentional. It is thus non-trivial to
isolate small message sequences that trigger an SPI. From this
experiment, we can conclude that SPIDER is more effective
than Delta in identifying SPIs.

C. RQ3: Sensitivity Analysis
To evaluate the efficacy of SPIDER’s dependency-aware

modular fuzzing design, we compare two baselines SINGLE
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and FULL. SINGLE do not use dependency analysis and fuzz
each service without any dependency, and FULL fuzzes each
service with all services as dependencies. We use SINGLE and
FULL to analyze all 157 services with the same configuration
as SPIDER and repeat the experiment 5 times.

Bug reports. As shown in Table I, all SPIs reported by
FULL and SINGLE are covered by SPIDER, which consistently
identifies all SPIs across each repetition. FULL only reports
one performance issue (V7), which can be identified easily by
generating only one event with an IPv4 payload. FULL fails
to identify all stateful performance issues that require more
than one event to trigger the issue. We found that including
all services as the dependency of the analyzed service greatly
decreased the performance of the fuzzer because the fuzzer
needs not only to take more time to initialize each service but
also to explore a larger state space that is irrelevant to the
analyzed service. SINGLE reports two performance issues (V1
and V8) and one false positive (F1). All three performance
issues can be identified by only exploring the state space of the
analyzed service. SINGLE cannot identify other performance
issues because the search space has been artificially limited.

Finding the worst case input. Figure 12 shows the z-score of
the worst-case input of different services identified by different
fuzzers across multiple runs. We only show services whose
z-score exceeds 1 for at least one fuzzer. Not that there are 12
services whose Z-scores are greater than 3 because different
services trigger the same SPI. SPIDER outperforms FULL in
14 out of 15 services. This confirms that it is important to use
modular fuzzing to reduce the search space for the performance
fuzzer. SPIDER out performs SINGLE in 11 out of 15 services.
SINGLE reports a higher z-score if the worst-case input can be
constructed without exploring the state space of other services.
However, it failed to construct complex state full input for
other services. Our result shows that the dependency-aware
modular design is critical in identifying SPIs.

VII. RELATED WORK

SDN fuzzers. Existing black-box SDN fuzzers (e.g., Beads [40]
and Delta [10]) generate packets based on an existing topology
and focus on logic protocol bugs in SDN controllers [40],
[10]. Most OpenFlow messages generated by the SDN fuzzer
only explore a small portion of the input space of the SDN
controller, and many performance-sensitive services are left
untested using black-box SDN fuzzers.

Other analysis of SDN controllers. Nice [41] uses symbolic
execution and model checking to identify property violations.
ConGuard [9] and SDNRacer [7] use static analysis to identify
race conditions in the SDN controller. EventScope [42]
focuses on missing event handlers in SDN applications, and
AudiSDN [43] identifies inconsistent policies among different
modules. None of these efforts tackle SPIs.

Static code analysis for performance. Static performance
analysis techniques (e.g., FindBugs [44], Clarity [45], Tor-
pedo [23]) identify performance issues based on code patterns.

Unfortunately, specifying such patterns usually requires domain-
specific knowledge and many patterns of SPIs are not described
in existing tools.
Symbolic execution for performance analysis. Symbolic
execution (e.g., Castan [46] and Wise [47]) can be used to
identify states with performance issues. However, the state
space of the program increases exponentially with respect to
the size of the program. Therefore, such techniques are still
limited to analyzing small programs and cannot handle the
large state space of the SDN controllers [48].
Languages for performance analysis. Performance modeling
languages such as RAML [49] provide an estimation of the
program complexity. However, translating the existing SDN
controller implementation into such languages is a challenge.
Similar to static performance analysis, performance modeling
languages cannot model the existing complex code base of the
SDN controller, such as reflection and runtime code generation.
Trace-driven analysis. Dynamic performance monitors (e.g.,
Freud [50] and PerfPlotter [51]) collect execution traces
and produce an algorithmic complexity estimate [50], [51].
However, if the traces used for modeling (typically of common-
case workloads) do not cover the (likely rare) SPI patterns,
such tools will not be able to uncover SPIs.
Fuzzing stateful network protocols. Network fuzzers use
protocol specifications [20], [52], [53] or try to infer protocols
automatically [21], [22], [54]. These focus on protocol bugs
or correctness issues, rather than SPIs.

VIII. CONCLUSION AND FUTURE DIRECTIONS

In some ways, our effort is a proof-by-construction of the
viability of a seemingly intractable program analysis problem:
uncovering deep semantic stateful performance issues in large
and complex software. We conclude by discussing extensions,
limitations, and lessons.

There are three immediate extensions. First, capturing the
semantic constraints in the top-10 events manually adds a lot
of value. Thus, we can increase coverage by making the type-
based generation more semantic-aware. Second, we can make
the reconstruction and validation process more automated (e.g.,
via program synthesis) using SPIDER’s hints. Third, we need a
way to also find issues in distributed components such as the
state store for ONOS.

Finally, our experience sheds light on the benefits of domain-
specific insights in fuzzing and of design for testability. On
a positive note, the presence of mock services and unit tests
simplified our implementation. At the same time, the lack of
semantic-aware constructors made event generation hard. An
interesting direction for future work is to discover such domain-
specific invariants and provide hints to developers on how they
can support fuzzing workflows.
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